【題目】如圖,在矩形ABCD中,AB:BC=3:5,點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為______.
【答案】或
【解析】
因?yàn)辄c(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,所以分兩種情況討論, 當(dāng)∠EFD=90°時(shí),證明△EFN∽△FDC,設(shè)CD=5a,根據(jù)比例式表示出CN,BN即可;當(dāng)∠EDF=90°時(shí),證明△FCD∽△DCB,設(shè)CD=3a, 根據(jù)比例式表示出CN,BN即可.
解:分兩種情況:
當(dāng)∠EFD=90°時(shí),如下圖,
∵∠EFN=∠C=90°,易證∠EFN=∠FDC,
∴△EFN∽△FDC,
設(shè)CD=5a,由題可知,CF=3a,
∴,∴BC=,
∴BN=NF=,即
當(dāng)∠EDF=90°時(shí),如下圖,
同理易證:△FCD∽△DCB,
設(shè)CD=3a,則BC=5a,CF=
∴BF=5a+,
∴BN=,NC=,
∴
綜上, CN:BN的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L1,L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.
(1)如圖2,已知拋物線L3:y=2x2-8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)請(qǐng)求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x-m) 2+n的任意一條友好拋物線的解析式為y=a2 (x-h) 2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,AB=3,E是AD邊上的一點(diǎn)(E與A、D不重合),以BE為邊畫正方形BEFG,邊EF與邊CD交于點(diǎn)H.
(1)當(dāng)E為邊AD的中點(diǎn)時(shí),求DH的長(zhǎng);
(2)設(shè)DE=x,CH=y,求y與x之間的函數(shù)關(guān)系式,并求出y的最小值;
(3)若DE=,將正方形BEFG繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)適當(dāng)角度后得到正方形B'EF'G',如圖2,邊EF'與CD交于點(diǎn)N、EB'與BC交于點(diǎn)M,連結(jié)MN,求∠ENM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC中頂點(diǎn)A在x軸負(fù)半軸上,B、C在第二象限,對(duì)角線交于點(diǎn)D,若C、D兩點(diǎn)在反比例函數(shù)的圖象上,且OABC的面積等于12,則k的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說明你的理由;若沒有變化,請(qǐng)求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本.已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,馬陽光同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?
(2)該文具店購(gòu)入這兩種筆記本共60本,花費(fèi)不超過296元,則購(gòu)買甲種筆記本多少本時(shí)該文具店獲利最大?
(3)店主經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)平均每天可售出甲種筆記本350本和乙種筆記本150本.如果甲種筆記本的售價(jià)每提高1元,則每天將少售出50本甲種筆記本;如果乙種筆記本的售價(jià)每提高1元,則每天少售出40本乙種筆記本,為使每天獲取的利潤(rùn)更多,店主決定把兩種筆記本的價(jià)格都提高元,在不考慮其他因素的條件下,當(dāng)定為多少元時(shí),才能使該文具店每天銷售甲、乙兩種筆記本獲取的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進(jìn)球類運(yùn)動(dòng)的發(fā)展,某校組織校內(nèi)球類運(yùn)動(dòng)會(huì),分籃球、足球、排球、羽毛球、乒乓球五項(xiàng),要求每位學(xué)生必須參加一項(xiàng)并且只能參加一項(xiàng),某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:
(1)圖表中m=________,n=________;
(2)若該校學(xué)生共有1000人,則該校參加羽毛球活動(dòng)的人數(shù)約為________人;
(3)該班參加乒乓球活動(dòng)的4位同學(xué)中,有3位男同學(xué)(分別用A,B,C表示)和1位女同學(xué)(用D表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(jià)(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,AC為對(duì)角線,AB=6,BC=8,點(diǎn)M是AD的中點(diǎn),P、Q兩點(diǎn)同時(shí)從點(diǎn)M出發(fā),點(diǎn)P沿射線MA向右運(yùn)動(dòng);點(diǎn)Q沿線段MD先向左運(yùn)動(dòng)至點(diǎn)D后,再向右運(yùn)動(dòng)到點(diǎn)M停止,點(diǎn)P隨之停止運(yùn)動(dòng).P、Q兩點(diǎn)運(yùn)動(dòng)的速度均為每秒1個(gè)單位.以PQ為一邊向上作正方形PRLQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),正方形PRLQ與△ABC重疊部分的面積為S.
(1)當(dāng)點(diǎn)R在線段AC上時(shí),求出t的值.
(2)求出S與t之間的函數(shù)關(guān)系式,并直接寫出取值范圍.(求函數(shù)關(guān)系式時(shí),只須寫出重疊部分為三角形時(shí)的詳細(xì)過程,其余情況直接寫出函數(shù)關(guān)系式.)
(3)在點(diǎn)P、點(diǎn)Q運(yùn)動(dòng)的同時(shí),有一點(diǎn)E以每秒1個(gè)單位的速度從C向B運(yùn)動(dòng),當(dāng)t為何值時(shí),△LRE是等腰三角形.請(qǐng)直接寫出t的值或取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com