【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延長線上一點,AF⊥CF,垂足為F.下列結論:①∠ACF=45°;②四邊形ABCD的面積等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正確的是( 。
A.①②B.②③C.①②③D.①②③④
【答案】C
【解析】
證明≌,得出,正確;由,得出,正確;
證出,,正確;由,不能確定,不正確;即可得出答案.
解:∵∠CAE=90°,AE=AC,
∴∠E=∠ACE=45°,
∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∴∠ACF=∠E=45°,①正確;
∵S四邊形ABCD=S△ABC+S△ACD,
∴S四邊形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正確;
∵△ABC≌△ADE,
∠ACB=∠AEC=45°,
∵∠ACE=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF,
過點A作AG⊥CG,垂足為點G,如圖所示:
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE=2AF,③正確;
∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,
不能確定S△ACF=S△BCD,④不正確;
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,分別以AB,CD為邊向外作等邊△ABE和△CDF,連接AF,CE.求證:四邊形AECF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用兩個邊長為10的小正方形拼成一個大的正方形.
(1)大正方形的邊長長度是___________;
(2)若沿次大正方形邊的方向剪出一個長方形,使長方形的邊與大正方形的邊重合或平行,能否使剪出的長方形的長寬之比3:2,且面積400cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市為創(chuàng)建省文明衛(wèi)生城市,計劃將城市道路兩旁的人行道進行改造,經(jīng)調(diào)查可知,若該工程由甲工程隊單獨來做恰好在規(guī)定時間內(nèi)完成;若該工程由乙工程隊單獨完成,則需要的天數(shù)是規(guī)定時間的2倍,若甲、乙兩工程隊合作8天后,余下的工程由甲工程隊單獨來做還需3天完成.
(1)問我市要求完成這項工程規(guī)定的時間是多少天?
(2)已知甲工程隊做一天需付給工資5萬元,乙工程隊做一天需付給工資2萬元.兩個工程隊在完成這項工程后,共獲得工程工資款總額65萬元,請問該工程甲、乙兩工程隊各做了多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
從上表可知,下列說法正確的有多少個
①拋物線與x軸的一個交點為(﹣2,0);
②拋物線與y軸的交點為(0,6);
③拋物線的對稱軸是直線x=;
④拋物線與x軸的另一個交點為(3,0);
⑤在對稱軸左側,y隨x增大而減少.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一根長18cm的牙刷置于底面直徑為5cm、高為12cm的圓柱形水杯中,牙刷露在杯子外面的長度為hcm,則h的取值范圍是( )
A. 5cm<h≤6cm B. 6cm<h≤7cm C. 5cm≤h≤6cm D. 5cm≤h<6cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學準備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為米的籬笆圍成,若墻長為米,設這個苗圃垂直于墻的一邊長為米.
若苗圃園的面積為平方米,求的值;
若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值,如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com