如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為O,A點坐標(biāo)為(4,0),B點坐標(biāo)為(﹣1,0),以AB的中點P為圓心,AB為直徑作⊙P的正半軸交于點C.
(1)求經(jīng)過A、B、C三點的拋物線所對應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線的頂點,求直線MC對應(yīng)的函數(shù)解析式;
(3)試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.
(1)(2)(3)MC與⊙P的位置關(guān)系是相切
【解析】解:(1)∵A(4,0),B(-1,0),
∴AB=5,半徑是PC=PB=PA=!郞P=。
在△CPO中,由勾股定理得:!郈(0,2)。
設(shè)經(jīng)過A、B、C三點拋物線解析式是,
把C(0,2)代入得:,∴。
∴。
∴經(jīng)過A、B、C三點拋物線解析式是,
(2)∵,∴M。
設(shè)直線MC對應(yīng)函數(shù)表達式是y=kx+b,
把C(0,2),M代入得:,解得。
∴直線MC對應(yīng)函數(shù)表達式是。
(3)MC與⊙P的位置關(guān)系是相切。證明如下:
設(shè)直線MC交x軸于D,
當(dāng)y=0時,,∴,OD=!郉(,0)。
在△COD中,由勾股定理得:,
又,,
∴CD2+PC2=PD2。
∴∠PCD=900,即PC⊥DC。
∵PC為半徑,
∴MC與⊙P的位置關(guān)系是相切。
(1)求出半徑,根據(jù)勾股定理求出C的坐標(biāo),設(shè)經(jīng)過A、B、C三點拋物線解析式是,把C(0,2)代入求出a即可。
(2)求出M的坐標(biāo),設(shè)直線MC對應(yīng)函數(shù)表達式是y=kx+b,把C(0,2),M代入得到方程組,求出方程組的解即可。
(3)根據(jù)點的坐標(biāo)和勾股定理分別求出PC、DC、PD的平方,根據(jù)勾股定理的逆定理得出∠PCD=900,即可作出判斷。
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com