【題目】某人承包了一池塘養(yǎng)魚,他想估計一下收入情況.于是讓他上初三的兒子幫忙.他兒子先讓他從魚塘里隨意打撈上了60條魚,把每條魚都作上標記,放回魚塘;過了2天,他讓他父親從魚塘內(nèi)打撈上了50條魚,結(jié)果里面有2條帶標記的.假設(shè)當時這種魚的市面價為2.8元/斤,平均每條魚估計2.3斤,你能幫助他估計一下今年的收入情況嗎?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】修正后的《水污染防治法》于2018年1月1日起施行,某企業(yè)為了提高污水處理的能力,決定購買10臺污水處理設(shè)備,現(xiàn)有兩種型號的設(shè)備,其中每臺的價格、月處理污水量如下表:
型 | 型 | |
價格(萬元/臺) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
經(jīng)預(yù)算,該企業(yè)購買設(shè)備的資金不高于105萬元.
(1)請你設(shè)計該企業(yè)可能的購買方案;
(2)若企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購買方案?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某種車的耗油量,我們對這種車在高速公路上做了耗油試驗,并把試驗的數(shù)據(jù)記錄下來, 制成如表:
汽車行駛時間 t(小時) | 0 | 1 | 2 | 3 | … |
油箱剩余油量 Q(升) | 100 | 94 | 88 | 82 | … |
(1)上表反映的兩個變量中,自變量是 ,因變量是 ;
(2)根據(jù)上表可知,該車油箱的大小為 升,每小時耗油 升;
(3)請求出兩個變量之間的關(guān)系式(用 t 來表示 Q).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.已知:在矩形中,是對角線,于點,于點;
(1)如圖1,求證:;
(2)如圖2,當時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=2x-5的圖象經(jīng)過正方形OABC的頂點A和C,則正方形OABC的面積為( )
A.9B.10C.12D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點O是直線AB上一點,OC、OD為從點O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請直接寫出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說明∠AON=∠CON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)中,,將沿翻折至,連結(jié).
結(jié)論1:與重疊部分的圖形是等腰三角形;
結(jié)論2:.
試證明以上結(jié)論.
(應(yīng)用與探究)
在中,已知,,將沿翻折至,連結(jié).若以、、、為頂點的四邊形是正方形,求的長.(要求畫出圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若DC=2,求圖中陰影部分的面積.(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,同學(xué)們探究了角平分線的作法.下面給出三個同學(xué)的作法:
小紅的作法
如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再過點O作MN的垂線,垂足為P,則射線OP便是∠AOB的平分線.
小明的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合,過角尺頂點C的射線OC便是∠AOB的平分線. |
小剛的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再分別過點M,N作OA,OB的垂線,交點為P,則射線OP便是∠AOB的平分線. |
請根據(jù)以上情境,解決下列問題
(1)小紅的作法依據(jù)是 .
(2)為說明小明作法是正確的,請幫助他完成證明過程.
證明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依據(jù))
(3)小剛的作法正確嗎?請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com