如圖,點P是直線:上的點,過點P的另一條直線交拋物線于A、B兩點.
(1)若直線的解析式為,求A、B兩點的坐標(biāo);
(2)①若點P的坐標(biāo)為(-2,),當(dāng)PA=AB時,請直接寫出點A的坐標(biāo);
②試證明:對于直線上任意給定的一點P,在拋物線上都能找到點A,使得PA=AB成立.
(3)設(shè)直線交軸于點C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點P的坐標(biāo).
(1)A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②過點P、B分別作過點A且平行于軸的直線的垂線,垂足分別為G、H.設(shè)P(,),A(,),由PA=PB可證得△PAG≌△BAH,即得AG=AH,PG=BH,則B(,),將點B坐標(biāo)代入拋物線,得,根據(jù)△的值始終大于0即可作出判斷;(3)(,).
【解析】
試題分析:(1)由題意聯(lián)立方程組即可求得A、B兩點的坐標(biāo);
(2)①根據(jù)函數(shù)圖象上的點的坐標(biāo)的特征結(jié)合PA=AB即可求得A點的坐標(biāo);
②過點P、B分別作過點A且平行于軸的直線的垂線,垂足分別為G、H.設(shè)P(,),A(,),由PA=PB可證得△PAG≌△BAH,即得AG=AH,PG=BH,則B(,),將點B坐標(biāo)代入拋物線,得,根據(jù)△的值始終大于0即可作出判斷;
(3)設(shè)直線:交y軸于D,設(shè)A(,),B(,).過A、B兩點分別作AG、BH垂直軸于G、H.由△AOB的外心在AB上可得∠AOB=90°,由△AGO∽△OHB,得,則,聯(lián)立得,依題意得、是方程的兩根,即可求得b的值,設(shè)P(,),過點P作PQ⊥軸于Q,在Rt△PDQ中,根據(jù)勾股定理列方程求解即可.
(1)依題意,得解得,
∴A(,),B(1,1);
(2)①A1(-1,1),A2(-3,9);
②過點P、B分別作過點A且平行于軸的直線的垂線,垂足分別為G、H.
設(shè)P(,),A(,),
∵PA=PB,
∴△PAG≌△BAH,
∴AG=AH,PG=BH,
∴B(,),
將點B坐標(biāo)代入拋物線,得,
∵△=
∴無論為何值時,關(guān)于的方程總有兩個不等的實數(shù)解,即對于任意給定的點P,拋物線上總能找到兩個滿足條件的點A;
(3)設(shè)直線:交y軸于D,設(shè)A(,),B(,).
過A、B兩點分別作AG、BH垂直軸于G、H.
∵△AOB的外心在AB上,
∴∠AOB=90°,
由△AGO∽△OHB,得,
∴.
聯(lián)立得,
依題意得、是方程的兩根,
∴,
∴,即D(0,1).
∵∠BPC=∠OCP,
∴DP=DC=3.
設(shè)P(,),過點P作PQ⊥軸于Q,
在Rt△PDQ中,,
∴.
解得(舍去),,
∴P(,).
∵PN平分∠MNQ,
∴PT=NT,
∴.
考點:二次函數(shù)的綜合題
點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com