在△ABC中,AD為中線,延長AD至E,使DE=AD,連接BE.求證:BE∥AC.

答案:
解析:

證明:在△ADC與△BDE中,AD=DE(已知),BD=DC(中線定義),∠ADC=∠EDB(對頂角相等),故△ADC≌△EDB.∴∠CAD=∠BED.∴BE∥AC.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,AD為∠BAC的角平分線,AE⊥BC,若∠B-∠C=40°,則∠DAE=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,△ABC面積是28cm2,AB=20cm,AC=8cm,則DE的長為
2cm
2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F.
(1)若△ABC面積是40cm2,AB=12cm,AC=8cm,求DE的長.
(2)求證:S△ABD:S△ACD=AB:AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,△ABC面積是28cm2,AB=8cm,AC=6cm,則DE=
4
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖在△ABC中,AD為BC邊上的高線,AE平分∠BAC,∠C=66°,∠B=34°,則∠EAD的度數(shù)是
16°
16°

查看答案和解析>>

同步練習冊答案