【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AGBC于點E,若BF=6,AB=4,則AE的長為( 。

A. B. 2 C. 3 D. 4

【答案】B

【解析】試題分析:由基本作圖得到AB=AF,加上AO平分∠BAD,則根據(jù)等腰三角形的性質(zhì)得到AOBF,BO=FO=BF=3,再根據(jù)平行四邊形的性質(zhì)得AFBE,得出∠1=3,于是得到∠2=3,根據(jù)等腰三角形的判定得AB=EB,然后再根據(jù)等腰三角形的性質(zhì)得到AO=OE,最后利用勾股定理計算出AO,從而得到AE的長.

解:連結(jié)EFAEBF交于點O,如圖

AB=AF,AO平分∠BAD,

AOBF,BO=FO=BF=3,

∵四邊形ABCD為平行四邊形,

AFBE,

∴∠1=3

∴∠2=3,

AB=EB

BOAE,

AO=OE,

RtAOB中,AO=,

AE=2AO=2

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程a≠0)有兩個不相等的實數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,方程的兩個根是24,則方程就是“倍根方程”.

1)若一元二次方程是“倍根方程”,則c=

2)若方程a≠0)是倍根方程,且相異兩點M(1+t,s),N(4-t,s),都在拋物線上,求一元二次方程a≠0)的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點,連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標(biāo)為(8,0),連接AB、AC.

(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷△ABC的形狀,并說明理由;

(3)若點N在x軸上運動,當(dāng)以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標(biāo);

(4)如圖2,若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)計了一款成本為20/件的工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)研究發(fā)現(xiàn),每天銷售量y與單價x滿足一次函數(shù)關(guān)系,求出yx的關(guān)系式;

(2)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DE分別為AB,AC邊上一點,且BECD,CDBE.若∠A30°BD1,CE2,則四邊形CEDB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】面對新冠肺炎疫情對經(jīng)濟(jì)運行的沖擊,中國人民銀行營業(yè)管理部(中國人民銀行總行在京派駐機(jī)構(gòu))與相關(guān)部門多方動員,合力推動轄內(nèi)9家全國性銀行北京分行和3家地方法人銀行為疫情防控重點企業(yè)提供優(yōu)惠利率貸款,有力有序推動企業(yè)復(fù)工復(fù)產(chǎn).截至202042日,已發(fā)放優(yōu)惠利率貸款573筆,金額280 億元.將280 億元用科學(xué)記數(shù)法表示應(yīng)為(

A.28×B.2.8×C.2.8×D.2.8×

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一款落地?zé)舻臒糁?/span>垂直于水平地面,高度為1.6米,支架部分的形狀為開口向下的拋物線,其頂點距燈柱的水平距離為0.8米,距地面的高度為2.4米,燈罩距燈柱的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.

查看答案和解析>>

同步練習(xí)冊答案