【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
【答案】(1)1;(2)2;(3)不能.
【解析】
(1)設(shè)P、Q分別從A、B兩點(diǎn)出發(fā),x秒后,AP=xcm,PB=(5-x)cm,BQ=2xcm則△PBQ的面積等于×2x(5-x),令該式等于4,列出方程求出符合題意的解;
(2)利用勾股定理列出方程求解即可;
(3)看△PBQ的面積能否等于7cm2,只需令×2x(5-x)=7,化簡該方程后,判斷該方程的△與0的關(guān)系,大于或等于0則可以,否則不可以.
設(shè)t秒后,則:AP=tcm,BP=(5﹣t)cm;BQ=2tcm.
(1)S△PBQ=BP×BQ,即,解得:t=1或4.(t=4秒不合題意,舍去)
故:1秒后,△PBQ的面積等于4cm2.
(2)PQ=5,則PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,t=0(舍)或2.
故2秒后,PQ的長度為5cm.
(3)令S△PQB=7,即:BP×=7,,整理得:t2﹣5t+7=0.
由于b2﹣4ac=25﹣28=﹣3<0,則方程沒有實(shí)數(shù)根.
所以,在(1)中,△PQB的面積不等于7cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AB=BC,∠B=∠C=90°,P是BC邊上一點(diǎn),AP⊥PD,E是AB邊上一點(diǎn),∠BPE=∠BAP.
(1) 如圖1,若AE=PE,直接寫出=______;
(2) 如圖2,求證:AP=PD+PE;
(3) 如圖3,當(dāng)AE=BP時(shí),連BD,則=______,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和B(3,0),與y軸交于點(diǎn)C,點(diǎn)D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.
(1)求拋物線的解析式;
(2)用含m的代數(shù)式表示點(diǎn)E的坐標(biāo),并求出點(diǎn)E縱坐標(biāo)的范圍;
(3)求△BCE的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x-1)2﹣9=0;
(2)3(x+5)=(x+5)2;
(3)x2+6x-55=0;
(4)2x(x+3)-1=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:AC=BE;
(2)若∠AFC=2∠D,連接AC,BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PE,連接BE,則∠CBE等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點(diǎn)為M,與y軸的交點(diǎn)為N,我們稱以N為頂點(diǎn),對稱軸是y軸且過點(diǎn)M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點(diǎn)為M,與y軸交點(diǎn)為N,將它的衍生直線MN先繞點(diǎn)N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個(gè)單位得直線n,P是直線n上的動(dòng)點(diǎn),是否存在點(diǎn)P,使△POM為直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com