證明:(1)對于y=3x+3,令y=0,得3x+3=0,x=-1,
∴B(-1,0).
∵C(1,0),
∴OB=OC,
∴AO垂直平分BC,
∴AB=AC,
∴∠ABC=∠ACB;
解:(2)∵AO⊥BC,DE⊥AC,
∴∠1+∠C=∠2+∠C=90°,
∴∠1=∠2.
∵AB=AC,
∴AO平分∠BAC,
∴∠2=∠3,
∴∠1=∠3.
對于y=3x+3,當x=0時,y=3,
∴A(0,3),
又∵D(-3,0),
∴DO=AO.
∵∠AOB=∠DOF=90°,
∴△DOF≌△AOB(ASA),
∴OF=OB,
∴F(0,1).
設(shè)直線DE的解析式為y=kx+b,
∴
,
解得
,
∴y=
x+1,
聯(lián)立
,
解得
,
所以,點G(-
,
);
解:(3)OM的長度不會發(fā)生變化,過P點作PN∥AB交BC于N點,
則∠1=∠Q,∠ABC=∠PNC,
∵∠ABC=∠ACB,
∴∠PNC=∠PCB,
∴PN=PC,
∵CP=BQ,
∴PN=BQ,
∵∠2=∠3,
∴△QBM≌△PNM(AAS),
∴MN=BM.
∵PC=PN,PO⊥CN,
∴ON=OC,
∵BM+MN+ON+OC=BC,
∴OM=MN+ON=
BC=1.
分析:(1)先求出點B的坐標,然后根據(jù)點B、點C的坐標求出OB=OC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等得到AB=AC,然后根據(jù)等邊對等角的性質(zhì)即可證明;
(2)根據(jù)等角的余角相等求出∠FDO=∠BAO,然后利用“角邊角”證明△DOF和△AOB全等,根據(jù)全等三角形對應邊相等可得OF=OB,從而求出點F的坐標,再根據(jù)待定系數(shù)法求直線解析式求出直線DF的解析式,與直線l
1的解析式聯(lián)立求解即可得到點G的坐標;
(3)過點P作PN∥AB交BC于點N,根據(jù)平行線的性質(zhì)可得∠MPN=∠Q,然后證明PN=BQ,再利用“角角邊”證明△QBM和△PNM全等,根據(jù)全等三角形對應邊相等可得MN=BM,再根據(jù)等腰三角形三線合一的性質(zhì)可得ON=OC,從而證明OM=
BC,是定值.
點評:本題綜合考查了一次函數(shù),待定系數(shù)法求直線解析式,兩直線的交點的求解,全等三角形的判定與性質(zhì),以及等角對等邊,等邊對等角的性質(zhì),綜合性較強,關(guān)系比較復雜,但難度不大,只要仔細分析,認真求解,便不難解答.