如圖①所示,直線l1:y=3x+3與x軸交于B點,與直線l2交于y軸上一點A,且l2與x軸的交點為C(1,0).作业宝
(1)求證:∠ABC=∠ACB;
(2)如圖②所示,過x軸上一點D(-3,0)作DE⊥AC于E,DE交y軸于F點,交AB于G點,求G點的坐標.
(3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點P(P不同于A、C兩點),過P點作一直線與AB的延長線交于Q點,與x軸交于M點,且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請求出它的長度;若變化,確定其變化范圍.

證明:(1)對于y=3x+3,令y=0,得3x+3=0,x=-1,
∴B(-1,0).
∵C(1,0),
∴OB=OC,
∴AO垂直平分BC,
∴AB=AC,
∴∠ABC=∠ACB;

解:(2)∵AO⊥BC,DE⊥AC,
∴∠1+∠C=∠2+∠C=90°,
∴∠1=∠2.
∵AB=AC,
∴AO平分∠BAC,
∴∠2=∠3,
∴∠1=∠3.
對于y=3x+3,當x=0時,y=3,
∴A(0,3),
又∵D(-3,0),
∴DO=AO.
∵∠AOB=∠DOF=90°,
∴△DOF≌△AOB(ASA),
∴OF=OB,
∴F(0,1).
設(shè)直線DE的解析式為y=kx+b,
,
解得
∴y=x+1,
聯(lián)立,
解得,
所以,點G(-);

解:(3)OM的長度不會發(fā)生變化,過P點作PN∥AB交BC于N點,
則∠1=∠Q,∠ABC=∠PNC,
∵∠ABC=∠ACB,
∴∠PNC=∠PCB,
∴PN=PC,
∵CP=BQ,
∴PN=BQ,
∵∠2=∠3,
∴△QBM≌△PNM(AAS),
∴MN=BM.
∵PC=PN,PO⊥CN,
∴ON=OC,
∵BM+MN+ON+OC=BC,
∴OM=MN+ON=BC=1.
分析:(1)先求出點B的坐標,然后根據(jù)點B、點C的坐標求出OB=OC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等得到AB=AC,然后根據(jù)等邊對等角的性質(zhì)即可證明;
(2)根據(jù)等角的余角相等求出∠FDO=∠BAO,然后利用“角邊角”證明△DOF和△AOB全等,根據(jù)全等三角形對應邊相等可得OF=OB,從而求出點F的坐標,再根據(jù)待定系數(shù)法求直線解析式求出直線DF的解析式,與直線l1的解析式聯(lián)立求解即可得到點G的坐標;
(3)過點P作PN∥AB交BC于點N,根據(jù)平行線的性質(zhì)可得∠MPN=∠Q,然后證明PN=BQ,再利用“角角邊”證明△QBM和△PNM全等,根據(jù)全等三角形對應邊相等可得MN=BM,再根據(jù)等腰三角形三線合一的性質(zhì)可得ON=OC,從而證明OM=BC,是定值.
點評:本題綜合考查了一次函數(shù),待定系數(shù)法求直線解析式,兩直線的交點的求解,全等三角形的判定與性質(zhì),以及等角對等邊,等邊對等角的性質(zhì),綜合性較強,關(guān)系比較復雜,但難度不大,只要仔細分析,認真求解,便不難解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,矩形AOBP的面積為6,反比例函數(shù)y=
kx
的圖象經(jīng)過點P,那么k的值為
 
;直線l1:y=k1x+b與直線l2:y=k2x在同一精英家教網(wǎng)平面直角坐標系中的圖象如圖2所示,則關(guān)于x的不等式k1x+b>k2x的解為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖所示,直線L1,L2相交于A點,請根據(jù)圖象寫出以交點坐標為解的二元一次方程組,并求出它的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)問題:如圖1,a、b、c、d是同一平面內(nèi)的一組等距平行線(相鄰平行線間的距離為1).畫出一個正方形ABCD,使它的頂點A、B、C、D分別在直線a、b、d、c上,并計算它的邊長.

小明的思考過程:
他利用圖1中的等距平行線構(gòu)造了3×3的正方形網(wǎng)格,得到了輔助正方形EFGH,如圖2所示,再分別找到它的四條邊的三等分點A、B、C、D,就可以畫出一個滿足題目要求的正方形.
請回答:圖2中正方形ABCD的邊長為
5
5

請參考小明的方法,解決下列問題:
(1)請在圖3的菱形網(wǎng)格(最小的菱形有一個內(nèi)角為60°,邊長為1)中,畫出一個等邊△ABC,使它的頂點A、B、C落在格點上,且分別在直線a、b、c上;
(3)如圖4,l1、l2、l3是同一平面內(nèi)的三條平行線,l1、l2之間的距離是
21
5
,l2、l3之間的距離是
21
10
,等邊△ABC的三個頂點分別在l1、l2、l3上,直接寫出△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①所示,直線l1:y=3x+3與x軸交于B點,與直線l2交于y軸上一點A,且l2與x軸的交點為C(1,0).
(1)求證:∠ABC=∠ACB;
(2)如圖②所示,過x軸上一點D(-3,0)作DE⊥AC于E,DE交y軸于F點,交AB于G點,求G點的坐標.
(3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點P(P不同于A、C兩點),過P點作一直線與AB的延長線交于Q點,與x軸交于M點,且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請求出它的長度;若變化,確定其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線l1與l2,l3相交,構(gòu)成的八個角中,已知∠1=∠8,則與∠8互補的角有( 。

查看答案和解析>>

同步練習冊答案