【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量(件)

購進所需費用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求、兩種商品每件的進價分別是多少元?

2)商場決定商品以每件50元出售,商品以每件元出售.為滿足市場需求,需購進、兩種商品共件,且商品的數(shù)量不少于商品數(shù)量的倍,請你求出獲利最大的進貨方案,并確定最大利潤.

【答案】1A商品每件進價為30元,B商品每件進價為70元;(2)當A商品購進800件,B商品購進200件時利潤最大,最大利潤為22000

【解析】

1)設A、B兩種商品每件的進價分別是x元,y元,根據(jù)題意可列二元一次方程組,解得可求AB兩種商品每件的進價.
2)設購進A種商品m件,獲得的利潤為w元,則購進B種商品(1000-m)件,由A種商品的數(shù)量不少于B種商品數(shù)量的4倍,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍,根據(jù)利潤=A商品利潤+B商品利潤列出wm之間的函數(shù)關系式,再根據(jù)一次函數(shù)的性質即可解決最值問題.

1)設A商品每件進價為x元,B商品每件進價為y元,根據(jù)題意得:

解得:

答:A商品每件進價為30元,B商品每件進價為70

2)設A商品購進m件,則B商品購進(1000-m).設獲得利潤為W.

m增大時,W減少

m=800時,W取最大值

最大利潤為:(元)

A商品購進800件,B商品購進200件時利潤最大,最大利潤為22000.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為(  )

A. B. 2 C. 2 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并用相關的思想方法解決問題.材料:為解方程x4x260可將方程變形為(x22x260然后設x2y,則(x22y2,原方程化為y2y60…

解得y1=﹣2y23,當y1=﹣2時,x2=﹣2無意義,舍去;

y23時,x2=﹣3,解得x±;

所以原方程的解為x1,x2=﹣;

問題:(1)在原方程得到方程①的過程中,利用   法達到了降次的目的,體現(xiàn)了   的數(shù)學思想;

2)利用以上學習到的方法解下列方程(x2+5x+1)(x2+5x+7)=7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠C=90°,BC=8cm,AC=6cm,點P從點B出發(fā),沿BC向點C2cm/s的速度移動,點Q從點C出發(fā)沿CA向點A1cm/s的速度移動,如果P、Q分別從B、C同時出發(fā),過多少秒時,以C、P、Q為頂點的三角形恰與ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖拋物線yax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(2,0).OC3OB

1)求拋物線的解析式;

2)若點P是線段AC下方拋物線上的動點,求三角形PAC面積的最大值.

3)在(2)的條件下,△PAC的面積為S,其中S為整數(shù)的點P好點,則存在多個好點,則所有好點的個數(shù)為   

4)在(2)的條件下,以PA為邊向直線AC右上側作正方形APHG,隨著點P的運動,正方形的大小、位置也隨之改變,當頂點HG恰好落在y軸上時,直接寫出對應的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是等腰RtABC外一點,把線段BP繞點B順時針旋轉90°得到線段BP',已知∠AP'B135°P'AP'C13,則P'APB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;

(2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,ADF的面積為S.

求S與m的函數(shù)關系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ly=kx+4與拋物線y=x2交于點A(x1y1),B(x2,y2).

(1)求:;的值.

(2)過點(0,-4)作直線PQx軸,且過點A、B分別作AMPQ于點M,BNPQ于點N,設直線ly=kx+4y軸于點F.求證:AF=AM=4+y1

(3)證明:+為定值,并求出該值.

查看答案和解析>>

同步練習冊答案