如圖,已知銳角三角形ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線相交于P,連接AP,若∠BPC=40°,求∠CAP的度數(shù)?
分析:根據(jù)外角與內(nèi)角性質(zhì)得出∠BAC的度數(shù),再利用角平分線的性質(zhì)以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
解答:解:延長BA,做PN⊥BD,PF⊥BA,PM⊥AC,
設(shè)∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=(x-40)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
PA=PA
PM=PF

∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì)以及三角形外角的性質(zhì)和直角三角全等的判定等知識(shí),根據(jù)角平分線的性質(zhì)得出PM=PN=PF是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一個(gè)三角形紙片ABC,BC邊的長為8,BC邊上的高為6,∠B和∠C都為銳角,M為AB一動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A、B不重合),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,在△AMN中,設(shè)MN的長為x,MN上的高為h.
(1)請(qǐng)你用含x的代數(shù)式表示h;
(2)將△AMN沿MN折疊,使△AMN落在四邊形BCNM所在平面,設(shè)點(diǎn)A落在平面的點(diǎn)為A1,△精英家教網(wǎng)A1MN與四邊形BCNM重疊部分的面積為y,當(dāng)x為何值時(shí),y最大,最大值為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:鼎尖助學(xué)系列—同步練習(xí)(數(shù)學(xué) 八年級(jí)下冊(cè))、函數(shù)及其圖象 畫相似圖形 題型:044

模仿練習(xí)(不要寫作法,但作圖要正確)

(1)

如圖在已知銳角三角形ABC內(nèi)作一個(gè)正方形DEFG,使點(diǎn)E、F在BC邊上,點(diǎn)D在AB邊上,點(diǎn)G在AC邊上.

(2)

分別在圖甲和圖乙的鈍角三角形和直角三角形中,作一個(gè)等邊△DEF,使頂點(diǎn)D、E、F分別在已知三角形的三邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知銳角三角形ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線相交于P,連接AP,若∠BPC=40°,求∠CAP的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第27章《二次函數(shù)》中考題集(33):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,已知一個(gè)三角形紙片ABC,BC邊的長為8,BC邊上的高為6,∠B和∠C都為銳角,M為AB一動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A、B不重合),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,在△AMN中,設(shè)MN的長為x,MN上的高為h.
(1)請(qǐng)你用含x的代數(shù)式表示h;
(2)將△AMN沿MN折疊,使△AMN落在四邊形BCNM所在平面,設(shè)點(diǎn)A落在平面的點(diǎn)為A1,△A1MN與四邊形BCNM重疊部分的面積為y,當(dāng)x為何值時(shí),y最大,最大值為多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案