【題目】在平面直角坐標(biāo)系中,已知直線的解析式為:,若將直線點旋轉(zhuǎn).如圖所示,當(dāng)直線旋轉(zhuǎn)到位置時,軸交于點,與軸交于點;當(dāng)直線旋轉(zhuǎn)到位置時,軸交于點

1)求點的坐標(biāo);

2)直接寫出、三點的坐標(biāo),連接,計算的面積;

3)已知坐標(biāo)平面內(nèi)一點,其坐標(biāo)滿足條件,當(dāng)點與點距離最小時,直接寫出的值.

【答案】1)點A的坐標(biāo)為;(2,;(3

【解析】

解:(1)當(dāng)時,

當(dāng)時,,

聯(lián)立解析式,得,

解得,

∴點A的坐標(biāo)為;

2 ,;

如解圖①,連接DC.

,,

∵點,∴底邊DB上的高為1,

.

【解法提示】將代入得:,

代入得:,解得

,

代入得:

;

3 .

【解法提示】∵,

∴點E在直線上.

如解圖②,過點A作直線的垂線,垂足為點E,過點A軸,交直線于點F,過點E,垂足為點G.

代入得:,

.

∵點E在直線上,

,

為等腰直角三角形.

,

,

∴點E的縱坐標(biāo)

.

圖①

圖②

【思維教練】(1)將分別代入直線的解析式,得到的解析式,聯(lián)立,解關(guān)于的方程組,可求得點的坐標(biāo);(2)先求得點、的坐標(biāo),然后依據(jù)求解即可;(3)由點可將問題轉(zhuǎn)化為求點到直線距離最小時的值,根據(jù)垂線段最短求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CDABADy軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于PQ兩點,則線段PQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某學(xué)校落實立德樹人根本任務(wù),構(gòu)建五育并舉教育體系,開設(shè)了“廚藝、園藝、電工、木工、編織”五大類勞動課程.為了解七年級學(xué)生對每類課程的選擇情況,隨機(jī)抽取了七年級若干名學(xué)生進(jìn)行調(diào)查(每人只選一類最喜歡的課程),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:

1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)為 人;

2)補(bǔ)全條形統(tǒng)計圖;

3)若該校七年級共有800名學(xué)生,請估計該校七年級學(xué)生選擇“廚藝”勞動課程的人數(shù);

4)七(1)班計劃在“園藝、電工、木工、編織”四大類勞動課程中任選兩類參加學(xué)校期末展示活動,請用列表或畫樹狀圖的方法,求恰好選中“園藝、編織”這兩類勞動課程的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三等分角大約是在公元前五世紀(jì)由古希臘人提出來的,借助如圖所示的三等分角儀能三等分任一角.這個三等分角儀由兩根有糟的棒OA、OB組成.兩根棒在O點相連并可繞O轉(zhuǎn)動,C點固定,OCCDDE,點DE在槽中滑動,若∠BDE84°.則∠AOB______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過點A(1,2)和點B(m,n)(m>1),過點B作y軸的垂線,垂足為C.

(1)求該反比例函數(shù)解析式;

(2)當(dāng)△ABC面積為2時,求點B的坐標(biāo).

(3)P為線段AB上一動點(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點P,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男生分成甲、乙兩組進(jìn)行引體向上的專項訓(xùn)練,已知甲組有名男生,并對兩組男生訓(xùn)練前、后引體向上的個數(shù)進(jìn)行統(tǒng)計分析,得到乙組男生訓(xùn)練前、后引體向上的平均個數(shù)分別是個和個,及下面不完整的統(tǒng)計表和統(tǒng)計圖.

甲組男生訓(xùn)練前、后引體向上個數(shù)統(tǒng)計表(單位:個)

甲組

男生

男生

男生

男生

男生

男生

平均個數(shù)

眾數(shù)

中位數(shù)

訓(xùn)練前

訓(xùn)練后

根據(jù)以上信息,解答下列問題:

(1) , , ;

(2)甲組訓(xùn)練后引體向上的平均個數(shù)比訓(xùn)練前增長了 ;

(3)你認(rèn)為哪組訓(xùn)練效果好?并提供一個支持你觀點的理由;

(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓(xùn)練后引體向上個數(shù)不變的人數(shù)占該組人數(shù)的,所以乙組的平均個數(shù)不可能提高個這么多.”你同意他的觀點嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊答案