5.如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)交BC于點(diǎn)G.連接AG.求證:△ABG≌△AFG.

分析 根據(jù)正方形的性質(zhì)得出∠B=∠D=90°,AD=AB,根據(jù)折疊的性質(zhì)得出AD=AF,∠AFG=∠D=90°,求出∠AFG=90°=∠B,AB=AF,根據(jù)HL推出全等即可.

解答 證明:∵四邊形ABCD是正方形,
∴∠B=∠D=90°,AD=AB,
由折疊的性質(zhì)可知:AD=AF,∠AFG=∠D=90°,
∴∠AFG=90°=∠B,AB=AF,
在Rt△ABG和Rt△AFG中
$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$
∴Rt△ABG≌Rt△AFG(HL),
即△ABG≌△AFG.

點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定的應(yīng)用,能求出證三角形全等的條件是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等還有HL定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一般地,當(dāng)α為銳角時(shí)sin(180°+α)=-sinα,如sin210°=sin(180°+30°)=-sin30°=$\frac{1}{2}$,由此可知:sin240°的值為-$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖1,已知A、B、C三點(diǎn)的坐標(biāo)分別為A(1,0),B(4,0),C(5,5).試在給出的直角坐標(biāo)平面內(nèi)畫(huà)△ABC,再畫(huà)△A′B′C′,使得△A′B′C′≌△ABC,并求出△A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.用“*”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a*b=ab2+2ab+a.
如:1*3=1×32+2×1×3+1=16
(1)求2*(-2)的值;
(2)若$2*x=m,({\frac{1}{4}x})*3=n$(其中x為有理數(shù)),試比較m,n的大小;
(3)若$[{({\frac{a+1}{2}})*({-3})}]*\frac{1}{2}$=a+4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1=$\frac{4}{x}$(x>0)的圖象與一次函數(shù)y2=kx-k的圖象的交點(diǎn)為A(m,2).
(1)求一次函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出使y1≥y2的x的取值范圍;
(3)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△PAB的面積是4,請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,∠A=50°,∠DCB=100°,CE是∠DCB的平分線,CE∥AB嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a是$\sqrt{5}$的整數(shù)部分,b是$\sqrt{5}$的小數(shù)部分,求a+$\frac{1}{b+2}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列運(yùn)算正確的是(  )
A.3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$B.-3$\sqrt{2}$=$\sqrt{(-3)^{2}×2}$C.$\sqrt{(-2)^{6}}$=(-2)3D.$\sqrt{(a-b)^{4}}$=(a-b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列運(yùn)算正確的是( 。
A.6a-5a=1B.a2+a2=2a4C.3a2b-4b2a=-a2bD.2a3+3a3=5a3

查看答案和解析>>

同步練習(xí)冊(cè)答案