【題目】如圖,兩個全等的Rt△AOB、Rt△OCD分別位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x軸上,且∠AOB=30°,AB=1.
(1)如圖1中Rt△OCD可以看作由Rt△AOB先繞點O順時針旋轉(zhuǎn) 度,再繞斜邊中點旋轉(zhuǎn) 度得到的,C點的坐標是 ;
(2)是否存在點E,使得以C、O、D、E為頂點的四邊形是平行四邊形,若存在,寫出E點的坐標;若不存在請說明理由.
(3)如圖2將△AOC沿AC翻折,O點的對應點落在P點處,求P點的坐標.
【答案】(1)90,180,(1,);(2)存在,E的坐標為(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).
【解析】
(1)先求出OB,再由旋轉(zhuǎn)求出OD,CD,即可得出結(jié)論;
(2)先求出D的坐標,再分三種情況,利用平行四邊形的性質(zhì)即可得出結(jié)論;
(3)先判斷出四邊形OAPC是正方形,再利用中點坐標公式即可得出結(jié)論
解:(1)Rt△OCD可以看作由Rt△AOB先繞點O順時針旋轉(zhuǎn)90°,再繞斜邊中點旋轉(zhuǎn)180°得到的,
在Rt△AOB中,∠AOB=30°,AB=1,
∴OB= ,
由旋轉(zhuǎn)知,OD=AB=1,CD=OB=,
∴C(1,),
故答案為90,180,(1,);
(2)存在,理由:如圖1,
由(1)知,C(1,),
∴D(1,0),
∵O(0,0),
∵以C、O、D、E為頂點的四邊形是平行四邊形,
∴①當OC為對角線時,
∴CE∥OD,CE=OD=1,點E和點B'重合,
∴E(0,),
②當CD為對角線時,CE∥OD,CE=OD=1,
∴E(2,),
當OD為對角線時,OE'∥CD,OE'=CD,
∴E(0,﹣),
即:滿足條件的E的坐標為(0,)或(2,),或(0,﹣);
(3)由旋轉(zhuǎn)知,OA=OC,∠OCD=∠AOB=30°,
∴∠COD=90°﹣∠OCD=60°,
∴∠AOC=90°,
由折疊知,AP=OA,PC=OC,
∴四邊形OAPC是正方形,
設(shè)P(m,n)
∵A(﹣,1),C(1,),O(0,0),
∴ (m+0)=(1﹣),(n+0)=(1+),
∴m=1﹣,n=1+,
∴P(1﹣,1+).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,電線桿上有盞路燈O,小明從點F出發(fā),沿直線FM運動,當他運動2米到達點D處時,測得影長DN=0.6 m,再前進2米到達點B處時,測得影長MB=1.6 m.(圖中線段AB、CD、EF表示小明的身高)
(1)請畫出路燈O的位置和小明位于F處時,在路燈燈光下的影子;
(2)求小明位于F處的影長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y1=﹣x2+1,直線y2=﹣x+1,當x任取一值時,x對應的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=2時,y1=﹣3,y2=﹣1,y1<y2,此時M=﹣3.下列判斷中:
①當x<0或x>1時,y1<y2;
②當x<0時,M=y1;
③使得M=的x的值是﹣或;
④對任意x的值,式子=1﹣M總成立.
其中正確的是_____(填上所有正確的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李家住房結(jié)構(gòu)如圖所示,小李打算把臥室和客廳鋪上木地板.
(1)請問他至少需要買多少平方米的木地板?(用字母表示)
(2)若米,米時,并且每平方米木地板的價格是元,則他至少需要準備多少元錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,含45°角的直角三角板DBC的直角頂點D在∠BAC的角平分線AD上,DF⊥AB于F,DG⊥AC于G,將△DBC沿BC翻轉(zhuǎn),D的對應點落在E點處,當∠BAC=90°,AB=4,AC=3時,△ACE的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE、DE分別平分∠BAD、∠ADC,E點在BC上.
(1)求證:BC=2AB;
(2)若AB=3cm,∠B=60°,一動點F以1cm/s的速度從A點出發(fā),沿線段AD運動,CF交DE于G,當CF∥AE時:
①求點F的運動時間t的值;②求線段AG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學從A地出發(fā),騎自行車在同一條路上行駛到距A地18千米的B地,他們離開A地的距離(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系圖象如圖所示. 根據(jù)題目和圖象提供的信息,下列說法正確的是( )
A. 乙比甲早出發(fā)半小時 B. 乙在行駛過程中沒有追上甲
C. 乙比甲先到達B地 D. 甲的行駛速度比乙的行駛速度快
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=4cm,將△ABC沿CA方向平移4cm得到△EFA,連接BE,BF;BE與AF交于點G
(1)判斷BE與AF的位置關(guān)系,并說明理由;
(2)若∠BEC=15°,求四邊形BCEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是兩張不同類型火車的車票:(“D×××次”表示動車,“G×××次”表示高鐵):
(1)根據(jù)車票中的信息填空:兩車行駛方向 ,出發(fā)時刻 (填“相同”或“不同”);
(2)已知該動車和高鐵的平均速度分別為200km/h,300km/h,如果兩車均按車票信息準時出發(fā),且同時到達終點,求A,B兩地之間的距離;
(3)在(2)的條件下,請求出在什么時刻兩車相距100km?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com