【題目】已知:關(guān)于x的二次函數(shù)y=﹣x2+ax(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2 , 請說明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請說明理由.
【答案】
(1)
解:∵點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在二次函數(shù)y=﹣x2+ax(a>0)的圖象上,
∴y1=﹣n2+an,y2=﹣(n+1)2+a(n+1)
∵y1=y2,
∴﹣n2+an=﹣(n+1)2+a(n+1)
整理得:a=2n+1
∴a必為奇數(shù)
(2)
解:當(dāng)a=11時(shí),∵y1≤y2≤y3
∴﹣n2+11n≤﹣(n+1)2+11(n+1)≤﹣(n+2)2+11(n+2)
化簡得:0≤10﹣2n≤18﹣4n,
解得:n≤4,
∵n為正整數(shù),
∴n=1、2、3、4
(3)
解:假設(shè)存在,則BA=BC,如右圖所示.
過點(diǎn)B作BN⊥x軸于點(diǎn)N,過點(diǎn)A作AD⊥BN于點(diǎn)D,CE⊥BN于點(diǎn)E.
∵xA=n,xB=n+1,xC=n+2,
∴AD=CE=1.
在Rt△ABD與Rt△CBE中,
,
∴Rt△ABD≌Rt△CBE(HL).
∴∠ABD=∠CBE,即BN為頂角的平分線.
由等腰三角形性質(zhì)可知,點(diǎn)A、C關(guān)于BN對稱,
∴BN為拋物線的對稱軸,點(diǎn)B為拋物線的頂點(diǎn),
∴n+1= ,
∴n= ﹣1.
∴a為大于2的偶數(shù),存在n,使△ABC是以AC為底邊的等腰三角形,n= ﹣1.
【解析】(1)將點(diǎn)A和點(diǎn)B的坐標(biāo)代入二次函數(shù)的解析式,利用y1=y2得到用n表示a的式子,即可得到答案;(2)將a=11代入解析式后,由題意列出不等式組,求得此不等式組的正整數(shù)解;(3)本問為存在型問題.如解答圖所示,可以由三角形全等及等腰三角形的性質(zhì),判定點(diǎn)B為拋物線的頂點(diǎn),點(diǎn)A、C關(guān)于對稱軸對稱.于是得到n+1= ,從而可以求出n= ﹣1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APD=90°,AP=PB=BC=CD,則下列結(jié)論成立的是( )
A.△PAB∽△PCA
B.△PAB∽△PDA
C.△ABC∽△DBA
D.△ABC∽△DCA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(1,5)和點(diǎn)B,與y軸相交于點(diǎn)C(0,6).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)現(xiàn)有一直線l與直線y=kx+b平行,且與反比例函數(shù)y= 的圖象在第一象限有且只有一個(gè)交點(diǎn),求直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】保障房建設(shè)是民心工程,某市從2008年開始加快保障房建設(shè)進(jìn)程,現(xiàn)統(tǒng)計(jì)了該市2008年到2012年這5年新建保障房情況,繪制成如圖所示的折線統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖.
(1)小麗看了統(tǒng)計(jì)圖后說:“該市2011年新建保障房的套數(shù)比2010年少了.”你認(rèn)為小麗說法正確嗎?請說明理由;
(2)求補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求這5年平均每年新建保障房的套數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為( ,0),點(diǎn)P為斜邊OB上的一個(gè)動點(diǎn),則PA+PC的最小值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD對角線AC上的一點(diǎn),連接DP并延長DP交邊AB于點(diǎn)E,連接BP并延長交邊AD于點(diǎn)F,交CD的延長線于點(diǎn)G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長為x,線段PF的長為y. ①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時(shí),求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(b>0)與拋物線 相交于點(diǎn)A(x1 , y1),B(x2 , y2)兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且kS+32=0.
(1)求b的值;
(2)求證:點(diǎn)(y1 , y2)在反比例函數(shù) 的圖象上;
(3)求證:x1OB+y2OA=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一批襯衣進(jìn)行抽檢,統(tǒng)計(jì)合格襯衣的件數(shù),得到如下的頻數(shù)表:
抽查件數(shù)(件) | 100 | 150 | 200 | 500 | 800 | 1000 |
合格頻數(shù) | 85 | 141 | 176 | 445 | 724 | 900 |
根據(jù)表中數(shù)據(jù),下列說法錯(cuò)誤的是( )
A.抽取100件的合格頻數(shù)是85
B.任抽取一件襯衣是合格品的概率是0.8
C.抽取200件的合格頻率是0.88
D.出售1200件襯衣,次品大約有120件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com