【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的橫坐標(biāo)是-4;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出﹣x﹤的解集;
(3)將直線l1:y=x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為20,求平移后的直線l2的函數(shù)表達(dá)式.
【答案】(1) (2)x>4或-4<x<0 (3)y=﹣x+5
【解析】
(1)由正比例函數(shù)解析式確定A(-4,2),然后把A點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;
(2)通過解方程組得B(4,-2),然后利用函數(shù)圖象寫出反比例函數(shù)圖象在一次函數(shù)y=-x上方所對應(yīng)的自變量的范圍,從而得到-x<的解集;
(3)設(shè)直線l2交x軸于D,連接AD、BD,如圖,利用三角形面積公式得S△ADB=S△ACB=20,則×OD×2+×OD×2=30,求出OD得到D(10,0),利用兩直線平行可設(shè)直線l2的解析式為y=-x+b,然后把D點(diǎn)坐標(biāo)代入求出b得到直線l2的解析式為y=-x+5.
解:(1)∵直線l1:y=﹣x經(jīng)過點(diǎn)A,A點(diǎn)的橫坐標(biāo)是-4
∴當(dāng)x=﹣4時(shí),y=2,
∴A(﹣4,2),
∵反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A,
∴k=﹣4×2=﹣8,
∴反比例函數(shù)的表達(dá)式為y=﹣;
(2)解方程組得或,
∴B(4,﹣2),
∴不等式﹣x﹤的解集為xspan>>4或-4<x<0;
(3)如圖,設(shè)平移后的直線l2與x軸交于點(diǎn)D,連接AD,BD,
∵CD∥AB,
∴△ABC的面積與△ABD的面積相等,
∵△ABC的面積為20,
∴S△AOD+S△BOD=20,即OD(|yA|+|yB|)=20,
∴×OD×4=20,
∴OD=10,
∴D(10,0),
設(shè)平移后的直線l2的函數(shù)表達(dá)式為y=﹣x+b,
把D(10,0)代入,可得0=﹣×10+b,
解得b=5,
∴平移后的直線l2的函數(shù)表達(dá)式為y=﹣x+5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)行垃圾資源化利用,是社會文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費(fèi)360萬元,購買乙型智能設(shè)備花費(fèi)480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為140萬元.
(1)求甲乙兩種智能設(shè)備單價(jià);
(2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價(jià)為每噸200元,平均每天可售出350噸,而當(dāng)銷售價(jià)每降低1元,平均每天可多售出5噸,但售價(jià)在每噸200元基礎(chǔ)上降價(jià)幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到36080元,求每噸燃料棒售價(jià)應(yīng)為多少元?
②每噸燃料棒售價(jià)應(yīng)為多少元時(shí),這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校想知道九年級學(xué)生對我國倡導(dǎo)的“一帶一路”的了解程度,隨機(jī)抽取部分九年級學(xué)生進(jìn)行問卷調(diào)查,問卷設(shè)有4個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng)):A.非常了解.B.了解.C.知道一點(diǎn).D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)兩幅統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)求本次共調(diào)查了多少學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校九年級共有600名學(xué)生,請你估計(jì)“了解”的學(xué)生約有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校全體學(xué)生積極參加校團(tuán)委組織的“獻(xiàn)愛心捐款”活動(dòng),為了解捐款情況,隨機(jī)抽取了部分學(xué)生并對他們的捐款情況作了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(統(tǒng)計(jì)圖中每組含最小值,不含最大值).請依據(jù)圖中信息解答下列問題:
(1)求隨機(jī)抽取的學(xué)生人數(shù);
(2)填空:(直接填答案)
①“20元~25元”部分對應(yīng)的圓心角度數(shù)為______;
②捐款的中位數(shù)落在______(填金額范圍);
(3)若該校共有學(xué)生3500人,請估算全校捐款不少于20元的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸x=,且經(jīng)過點(diǎn)(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是拋物線上的兩點(diǎn),則y1>y2,其中說法正確的序號是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高和環(huán)境的不斷改善,帶動(dòng)了旅游業(yè)的發(fā)展.某市旅游景區(qū)有A,B,C,D四個(gè)著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2019年游客去各景點(diǎn)情況統(tǒng)計(jì)圖,根據(jù)給出的信息解答下列問題:
(1)2019年該市旅游景區(qū)共接待游客 萬人,扇形統(tǒng)計(jì)圖中C景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 度;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)甲,乙兩位同學(xué)去該景區(qū)旅游,用樹狀圖或列表法,求甲,乙兩位同學(xué)在A,B,D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把方程(x- m)2+(y-n)2=r2稱為圓心為(m,n)、半徑長為r的圓的標(biāo)準(zhǔn)方程.例如,圓心為(1,-2)、半徑長為3的圓的標(biāo)準(zhǔn)方程是(x- 1)2+(y+2)2=9.在平面直角坐標(biāo)系中,圓C與軸交于點(diǎn)A.B.且點(diǎn)B的坐標(biāo)為(8.0),與y軸相切于點(diǎn)D(0, 4),過點(diǎn)A,B,D的拋物線的頂點(diǎn)為E.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)試判斷直線AE與圓C的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸,y軸的正半軸分別交于點(diǎn)和點(diǎn),與x軸負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿折線向終點(diǎn)B勻速運(yùn)動(dòng),將線段繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到線段,連接.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,當(dāng)點(diǎn)N在線段上時(shí),求證:;
(3)當(dāng)點(diǎn)N在線段上時(shí),直接寫出此時(shí)直線與拋物線交點(diǎn)的縱坐標(biāo);
(4)設(shè)的長度為n,直接寫出在點(diǎn)M移動(dòng)的過程中,的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com