矩形OABC的頂點(diǎn)A(-8,0)、C(0,6),點(diǎn)D是BC邊上的中點(diǎn),拋物線y=ax2+bx經(jīng)過A、D兩點(diǎn),
(1)求點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′的坐標(biāo)及a、b的值;
(2)在y軸上取一點(diǎn)P,使PA+PD長(zhǎng)度最短,求點(diǎn)P的坐標(biāo);
(3)將拋物線y=ax2+bx向下平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D1.當(dāng)拋物線平移到某個(gè)位置時(shí),恰好使得點(diǎn)O是y軸上到A1、D1兩點(diǎn)距離之和OA1+OD1最短的一點(diǎn),求此拋物線的解析式.
(1)由矩形的性質(zhì)可知:B(-8,6),
∴D(-4,6),點(diǎn)D關(guān)于y軸對(duì)稱點(diǎn)D′(4,6),
將A(-8,0)、D(-4,6)代入y=ax2+bx,得:
64a-8b=0
16a-4b=6

a=-
3
8
b=-3
;

(2)設(shè)直線AD′的解析式為y=kx+n,則:
-8k+n=0
4k+n=6
,
解得:
k=
1
2
n=4

故直線y=
1
2
x+4與y軸交于點(diǎn)(0,4),所以點(diǎn)P(0,4);,

(3)設(shè)拋物線現(xiàn)象平移了m個(gè)單位,則A1(-8,-m),D1(-4,6-m)
∴D1′(4,6-m),
令直線A1D1′為y=k′x+b′;
-8k′+b′=-m
4k′+b′=-m

k′=
1
2
b′=4-m

∵點(diǎn)O為使OA1+OD1最短的點(diǎn),
∴b′=4-m=0
∴m=4,
即將拋物線向下平移了4個(gè)單位;
∴y+4=-
3
8
x2-3x,即此時(shí)的解析式為y=-
3
8
x2-3x-4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,OABC是邊長(zhǎng)為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。
A.-
2
3
B.-
2
3
C.-2D.-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

求過(-1,0),(3,0),(1,-5)三點(diǎn)的拋物線的解析式,并畫出該拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-
1
2
x2+mx+m+
1
2
的圖象與x軸相交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)D在第一象限.過點(diǎn)D作x軸的垂線,垂足為H.
(1)當(dāng)m=
3
2
時(shí),求tan∠ADH的值;
(2)當(dāng)60°≤∠ADB≤90°時(shí),求m的變化范圍;
(3)設(shè)△BCD和△ABC的面積分別為S1、S2,且滿足S1=S2,求點(diǎn)D到直線BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的頂點(diǎn)坐標(biāo)為(2,0),直線y=x+2與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)在y軸上,
(I)求此二次函數(shù)的解析式.
(II)P為線段AB上一點(diǎn)(A,B兩端點(diǎn)除外),過P點(diǎn)作x軸的垂線PC與(I)中的二此函數(shù)的圖象交于Q點(diǎn),設(shè)線段PQ的長(zhǎng)為m,P點(diǎn)的橫坐標(biāo)為x,求出函數(shù)m與自變量x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(III)線段AB上是否存在一點(diǎn),使(II)中的線段PQ的長(zhǎng)等于5?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小李推鉛球,如果鉛球運(yùn)行時(shí)離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式y=-
1
8
x2+
1
2
x+
3
2
,那么鉛球運(yùn)動(dòng)過程中最高點(diǎn)離地面的距離為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線y=
2
5
x+2與x軸交于點(diǎn)A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過A、C兩點(diǎn),拋物線交x軸于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)Q在拋物線上,且有△AQC和△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,點(diǎn)P為△AOC外接圓上
ACO
的中點(diǎn),直線PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時(shí),DE交AC于M,DF交y軸負(fù)半軸于N、問CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=x2-kx+3圖象的頂點(diǎn)坐標(biāo)為C,并與x軸相交于A、B,且AB=4,
(1)求實(shí)數(shù)k的值;
(2)若P是上述拋物線上的一個(gè)動(dòng)點(diǎn)(除點(diǎn)C外),求使S△ABP=S△ABC成立的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=
1
4
x2
+1,點(diǎn)C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點(diǎn)A,B在拋物線上,AB與y軸交于點(diǎn)M,已知點(diǎn)Q(x,y)在拋物線上,點(diǎn)P(t,0)在x軸上.
(1)寫出點(diǎn)M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時(shí).
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長(zhǎng)度之比為1:2時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案