【題目】計(jì)算下面各題
(1)計(jì)算:|1﹣ |+( )﹣1﹣2cos30°.
(2)化簡(jiǎn): ﹣ .
【答案】
(1)解:|1﹣ |+( )﹣1﹣2cos30°
= ﹣1+2﹣2×
= ﹣1+2﹣
=1
(2)解: ﹣
= ﹣
=
=
【解析】(1)本題涉及絕對(duì)值、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式化簡(jiǎn)4個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果;(2)異分母分式加減法法則:把分母不相同的幾個(gè)分式化成分母相同的分式,叫做通分,經(jīng)過(guò)通分,異分母分式的加減就轉(zhuǎn)化為同分母分式的加減.
【考點(diǎn)精析】本題主要考查了分式的加減法和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握分式的加減法分為同分母的加減法和異分母的加減法.而異分母的加減法是通過(guò)"通分"轉(zhuǎn)化為同分母的加減法進(jìn)行運(yùn)算的;aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣10ax+16a(a≠0)交x軸于A、B兩點(diǎn),拋物線的頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)H,且AB=2DH.
(1)求a的值;
(2)點(diǎn)P是對(duì)稱(chēng)軸右側(cè)拋物線上的點(diǎn),連接PD,PQ⊥x軸于點(diǎn)Q,點(diǎn)N是線段PQ上的點(diǎn),過(guò)點(diǎn)N作NF⊥DH于點(diǎn)F,NE⊥PD交直線DH于點(diǎn)E,求線段EF的長(zhǎng);
(3)在(2)的條件下,連接DN、DQ、PB,當(dāng)DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時(shí),作NC⊥PB交對(duì)稱(chēng)軸左側(cè)的拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極開(kāi)展“陽(yáng)光體育”活動(dòng),共開(kāi)設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校最喜愛(ài)籃球的人數(shù)比最喜愛(ài)足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動(dòng),當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng),DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,
設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱(chēng)軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:( ﹣π)0﹣6tan30°+( )﹣2+|1+ |.
(2)解不等式組 ,并寫(xiě)出它的所有整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF均是邊長(zhǎng)為4的等邊三角形,△DEF的頂點(diǎn)D為△ABC的一邊BC的中點(diǎn),△DEF繞點(diǎn)D旋轉(zhuǎn),且邊DF,DE始終分別交△ABC的邊AB,AC于點(diǎn)H,G,圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對(duì)稱(chēng).連結(jié)HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點(diǎn)I,J.
(1)求證:△DHB∽△GDC;
(2)設(shè)CG=x,四邊形HH′G′G的面積為y,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍.
②求當(dāng)x為何值時(shí),y的值最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),請(qǐng)用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣1,0),AB=4,請(qǐng)求出該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種服裝,每件甲種服裝比每件乙種服裝貴25元,該商場(chǎng)用2000元購(gòu)進(jìn)甲種服裝,用750元購(gòu)進(jìn)乙種服裝,所購(gòu)進(jìn)的甲種服裝的件數(shù)是所購(gòu)進(jìn)的乙種服裝的件數(shù)的2倍.
(1)分別求每件甲種服裝和每件乙種服裝的進(jìn)價(jià);
(2)若每件甲種服裝售價(jià)130元,將購(gòu)進(jìn)的兩種服裝全部售出后,使得所獲利潤(rùn)不少于750元,問(wèn)每件乙種服裝售價(jià)至少是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com