精英家教網(wǎng)如圖,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,過B作BA1⊥AC,過A1作A1B1⊥BC,得陰影Rt△A1B1B;再過B1作B1A2⊥AC,過A2作A2B2⊥BC,得陰影Rt△A2B2B1;…如此下去,請猜測這樣得到的所有陰影三角形的面積之和為( 。
A、
16
25
B、
96
25
C、
51
14
D、
96
41
分析:若逐一求陰影部分的面積此題會比較復雜,可從整體的角度來求解此題;易知所有白色部分的小直角三角形都與陰影部分的三角形相似,那么它們的面積比應該等于相似比的平方,它們的相似比為AB:A1B,AB的長已知,根據(jù)直角三角形面積的不同表示方法可求得A1B,由此求得陰影部分占△ABC面積的比例大小,從而可求得陰影部分的面積和.
解答:解:∵A1B1∥AB,
∴Rt△ABA1∽△BA1B1,同理可證:Rt△A1B1A2∽Rt△B1A2B2,…;
即白色部分的小直角三角形與陰影部分的小直角三角形逐一對應相似,
在Rt△ABC中,BA1⊥AC,
由S=
1
2
AB•BC=
1
2
AC•BA1,故BA1=
12
5
,
∴AB:BA1=3:
12
5
=5:4,
∴白色部分小直角三角形的面積和:陰影部分小直角三角形的面積和=AB2:BA12=25:16,
故S陰影=
16
41
S△ABC=
96
41

故選D.
點評:此題主要考查了相似三角形的判定和性質(zhì),注意整體思想在此題中的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案