精英家教網(wǎng)若一個(gè)矩形的短邊與長(zhǎng)邊的比值為
5
-1
2
(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由;
(3)歸納:通過上述操作及探究,請(qǐng)概括出具有一般性的結(jié)論(不需要證明).
分析:(1)只需在矩形的長(zhǎng)上截取AE=AD,DF=AD,連接EF即可;
(2)可以結(jié)合(1)中正方形的性質(zhì)求得矩形EBCF的寬與長(zhǎng)的比進(jìn)行分析;
(3)只要在黃金矩形中截取以矩形的短邊為邊長(zhǎng)的正方形后,剩下的仍然是黃金矩形.
解答:解:(1)如圖.精英家教網(wǎng)

(2)探究:四邊形EBCF是矩形,而且是黃金矩形.
∵四邊形AEFD是正方形,
∴∠AEF=90°
∴∠BEF=90°,
∵四邊形ABCD是矩形,
∴∠B=∠C=90°
∴∠BEF=∠B=∠C=90°,
∴四邊形EBCF是矩形.
【方法1】設(shè)CD=a,AD=b,則
b
a
=
5
-1
2

CF
EF
=
a-b
b
=
a
b
-1=
2
5
-1
-1=
2(
5
+1)
4
-1=
5
-1
2

∴矩形EBCF是黃金矩形.
【方法2】設(shè)CD=a,則AD=
5
-1
2
a
CF=CD-DF=a-
5
-1
2
a=
3-
5
2
a

CF
EF
=
3-
5
2
a
5
-1
2
a
=
3-
5
5
-1
=
5
-1
2

∴矩形EBCF是黃金矩形.

(3)歸納:在黃金矩形內(nèi)以短邊為邊作一個(gè)正方形后,所得到的另外一個(gè)四邊形是矩形,而且是黃金矩形.
點(diǎn)評(píng):此題綜合運(yùn)用了正方形的性質(zhì)和黃金矩形的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若一個(gè)矩形的短邊與長(zhǎng)邊的比值為
5
-1
2
(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們已經(jīng)知道,如果線段MN被點(diǎn)P分成線段MP和PN,且
MP
MN
=
PN
MP
,那么稱線段MN被點(diǎn)P黃金分割,點(diǎn)P叫做線段MN的黃金分割點(diǎn),MP與MN的比叫做黃金比.通過計(jì)算可知黃金比為
5
-1
2
.若一個(gè)矩形的短邊與長(zhǎng)邊之比等于黃金比,則稱這個(gè)矩形為黃金矩形.已知圖中正方形ABCD的邊長(zhǎng)為1,請(qǐng)你以AD為短邊,用尺規(guī)作一個(gè)黃金矩形,要求保留作圖痕跡并簡(jiǎn)要寫出作法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省寧波市九年級(jí)中考適應(yīng)性考試(一)數(shù)學(xué)卷(帶解析) 題型:解答題

若一個(gè)矩形的短邊與長(zhǎng)邊的比值為(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.

(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶若一個(gè)矩形的短邊與長(zhǎng)邊的比值為數(shù)學(xué)公式(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由;
(3)歸納:通過上述操作及探究,請(qǐng)概括出具有一般性的結(jié)論(不需要證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案