判定任意兩個(gè)三角形全等的方法有:“SAS”“ASA”“AAS”和“SSS”.請(qǐng)你根據(jù)上述學(xué)過(guò)的方法思考下列問(wèn)題:

若兩個(gè)三角形的一邊和另一邊上的高對(duì)應(yīng)相等,則這兩個(gè)三角形全等嗎?若全等,請(qǐng)說(shuō)明理由;若不全等,請(qǐng)畫(huà)圖舉出反例,并再添加一條件,使之成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

31、閱讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請(qǐng)任意選擇其中一種,對(duì)原題進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、兩個(gè)三角形有以下三對(duì)元素對(duì)應(yīng)相等,則不能判定全等的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE,求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證明AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請(qǐng)任意選擇其中兩種對(duì)原題進(jìn)行證明.

圖(1):延長(zhǎng)DE到F使得EF=DE
圖(2):作CG⊥DE于G,BF⊥DE于F交DE的延長(zhǎng)線于F
圖(3):過(guò)C點(diǎn)作CF∥AB交DE的延長(zhǎng)線于F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課程同步練習(xí) 數(shù)學(xué) 八年級(jí)上冊(cè) 題型:044

如圖,已知:AB=AD,D是BC中點(diǎn),E是AD上任意一點(diǎn),連接EB、EC,求證:EB=EC.

分析:(1)觀察圖形,圖中線段EB和線段EC是________三角形中的邊.現(xiàn)需證EB=EC,可證△ABE≌________或△BED≌________.

(2)由已知可得BD=CD,不要忽略圖形中隱含的已知條件AE、DE、AD是三對(duì)全等三角形的公共邊.

(3)找需知,只需證得∠BAE=∠CAE或∠BDE=∠CDE,即可得到上述兩個(gè)三角形全等(恰當(dāng)選擇SAS來(lái)判定).

(4)再看已知,三組對(duì)應(yīng)邊對(duì)應(yīng)相等,可以利用SSS來(lái)證明△ABD≌△ACD,就得到∠BAE=∠CAE或∠BDE=∠CDE.

請(qǐng)同學(xué)們完成下列填空

證明一:∵D是BC中點(diǎn)  ∴BD=CD

在△ABD和△ACD中,

________

________

________

∴△ABD≌△ACD(SSS)

∴∠BAE=∠CAE(全等三角形的對(duì)應(yīng)角相等)

在△ABE和△ACE中,

________

________

________

∴△ABE≌△ACE(SAS)

∴EB=EC(全等三角形的對(duì)應(yīng)邊相等)

(請(qǐng)同學(xué)們根據(jù)分析思路,寫(xiě)出第二種證明方法)

查看答案和解析>>

同步練習(xí)冊(cè)答案