【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從B出發(fā),沿BC方向,以1cm/s的速度向點C運動,點Q從A出發(fā),沿AB方向,以2cm/s的速度向點B運動;若兩點同時出發(fā),當(dāng)其中一點到達(dá)端點時,兩點同時停止運動,設(shè)運動時間為t(s)(t>0),△BPQ的面積為S(cm2).
(1)t=2秒時,則點P到AB的距離是 cm,S= cm2;
(2)t為何值時,PQ⊥AB;
(3)t為何值時,△BPQ是以BP為底邊的等腰三角形;
(4)求S與t之間的函數(shù)關(guān)系式,并求S的最大值.
【答案】(1),;(2);(3);(4)S=﹣t2+3t,S的最大值為.
【解析】
(1)作PH⊥AB于H,根據(jù)勾股定理求出AB,證明△BHP∽△BCA,根據(jù)相似三角形的性質(zhì)列出比例式,求出PH,根據(jù)三角形的面積公式求出S;
(2)根據(jù)△BQP∽△BCA,得到=,代入計算求出t即可;
(3)過Q作QG⊥BC于G,證明△QBG∽△ABC,根據(jù)相似三角形的性質(zhì)列式計算,得到答案;
(4)根據(jù)△QBG∽△ABC,用t表示出QG,根據(jù)三角形的面積公式列出二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)計算即可.
解:在Rt△ABC中,AC=6cm,BC=8cm,
由勾股定理得,AB===10cm,
∴0<t≤5,經(jīng)過ts時,BP=t,AQ=2t,則BQ=10﹣2t,
(1)如圖1,作PH⊥AB于H,
當(dāng)t=2時,BP=2,BQ=10﹣2t=6,
∵∠BHP=∠BCA=90°,∠B=∠B,
∴△BHP∽△BCA,
∴=,即=,
解得:PH=,
∴S=×6×=,
故答案為:;;
(2)當(dāng)PQ⊥AB時,∠BQP=∠BCA=90°,∠B=∠B,
∴△BQP∽△BCA,
∴=,即=,
解得,t=,
則當(dāng)t=時,PQ⊥AB;
(3)如圖2,過Q作QG⊥BC于G,
∵QB=QP,QG⊥BC,
∴BG=GP=t,
∵∠BGQ=∠C=90°,∠B=∠B,
∴△QBG∽△ABC,
∴=,即=,
解得,t=,
∴當(dāng)t=時,△BPQ是以BP為底邊的等腰三角形;
(4)由(3)可知,△QBG∽△ABC,
∴=,即=,
解得,QG=﹣t+6,
∴S=×t×(﹣t+6),
=﹣t2+3t,
=﹣(t﹣)2+,
則當(dāng)t=時,S的值最大,最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,某中學(xué)舉辦了一次以“弘揚傳統(tǒng)文化”為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學(xué)生參加,為了更好地了解本次比賽成績的分布情況,學(xué)校分別從兩個年級隨機抽取了若干名學(xué)生的成績作為樣本進(jìn)行分析,下面是初二年級學(xué)生成績樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分?jǐn)?shù)段中的分?jǐn)?shù)包括最低分,不包括最高分)
初二學(xué)生樣本成績頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | |
60~70 | 4 | 0.10 |
70~80 | 0.20 | |
80~90 | 14 | 0.35 |
90~100 | ||
合計 | 40 | 1.00 |
請根據(jù)所給信息,解答下列問題:
(1)補全成績頻數(shù)分布表和頻數(shù)分布直方圖.
(2)若初二學(xué)生成績樣本中80~90分段的具體成績?yōu)椋?/span>
80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89
①根據(jù)上述信息,估計初二學(xué)生成績的中位數(shù)為__________.
②若初一學(xué)生樣本成績的中位數(shù)為80,甲同學(xué)在比賽中得到了82分,在他所在的年級中位居275名,根據(jù)上述信息推斷甲同學(xué)所在年級為__________(選填“初一”或者“初二”).
③若成績在85分及以上均為“優(yōu)秀”,請你根據(jù)抽取的樣本數(shù)據(jù),估計初二年級學(xué)生中達(dá)到“優(yōu)秀”的學(xué)生人數(shù)為__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評估,游樂園決定對噴水設(shè)施做如下設(shè)計改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程:2x2+6x﹣a=0.
(1)當(dāng)a=5時,解方程;
(2)若2x2+6x﹣a=0的一個解是x=1,求a;
(3)若2x2+6x﹣a=0無實數(shù)解,試確定a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,點C是AB中點,CD⊥AB,P是CD上任意一點,由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于點A和點B,點C是AB中點,CD⊥AB交OA于點D,連結(jié)BD,求BD的長
(應(yīng)用)如圖③
(1)將線段AB繞點A順時針旋轉(zhuǎn)90°得到線段AB′,請在圖③網(wǎng)格中畫出線段AB;
(2)若存在一點P,使得PA=PB′,且∠APB′≠90°,當(dāng)點P的橫、縱坐標(biāo)均為整數(shù)時,則AP長度的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E,F分別為AB、BC的中點,點H是AD邊上一點,將△DCF沿DF折疊得△DC′F,將△AEH沿EH折疊后點A的對應(yīng)點A′剛好落在DC′上,則cos∠DA′H=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:△AEC≌△DFB;
(2)若∠EBD=60°,BE=BC,求證:四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com