如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,),△AOB的面積是.
(1)求點(diǎn)B的坐標(biāo);
(2)求過點(diǎn)A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點(diǎn)C,使△AOC的周長最?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點(diǎn)P,過點(diǎn)P作x軸的垂線,交直線AB于點(diǎn)D,線段OD把△AOB分成兩個(gè)三角形.使其中一個(gè)三角形面積與四邊形BPOD面積比為2∶3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
解:(1)由題意得OB·= ∴B(-2,0). (2)設(shè)拋物線的解析式為y=ax(x+2),代入點(diǎn)A(1,),得a=, ∴, (3)存在點(diǎn)C、過點(diǎn)A作AF垂直于x軸于點(diǎn)F,拋物線的對稱軸x=-1交x軸于點(diǎn)E、當(dāng)點(diǎn)C位于對稱軸與線段AB的交點(diǎn)時(shí),△AOC的周長最小, ∵△BCE∽△BAF,∴, ∴CE==,∴C(-1,). (4)存在、如圖,設(shè)p(x,y),直線AB為y=kx+b,則 解得, ∴直線AB為,S四BPOD=S△BPO+S△BOD=|OB||YP|+|OB||YD|=|YP|+|YD| =, ∵S△AOD=S△AOB-S△BOD=-×2×|x+|=-x+, ∴=, ∴x1=-,x2=1(舍去), ∴p(-,-), 又∵S△BOD=x+, ∴=, ∴x1=-,x2=-2. P(-2,0),不符合題意. ∴存在,點(diǎn)P坐標(biāo)是(-,-). |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com