如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
解:(1)∵直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),
∴可得A(1,0),B(0,﹣3),
把A、B兩點(diǎn)的坐標(biāo)分別代入y=x2+bx+c得:,解得:。
∴拋物線解析式為:y=x2+2x﹣3。
(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3。
∴C點(diǎn)坐標(biāo)為:(﹣3,0),AC=4,
∴S△ABC=AC×OB=×4×3=6。
(3)存在。
易得拋物線的對稱軸為:x=﹣1,假設(shè)存在M(﹣1,m)滿足題意,
根據(jù)勾股定理,得。
分三種情況討論:
①當(dāng)AM=AB時(shí),,解得:。
∴M1(﹣1,),M2(﹣1,)。
②當(dāng)BM=AB時(shí),,解得:M3=0,M4=﹣6。
∴M3(﹣1,0),M4(﹣1,﹣6)。
③當(dāng)AM=BM時(shí),,解得:m=﹣1。
∴M5(﹣1,﹣1)。
綜上所述,共存在五個(gè)點(diǎn)使△ABM為等腰三角形,坐標(biāo)為M1(﹣1,),M2(﹣1,),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)。
【解析】
試題分析:(1)根據(jù)直線解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),然后將點(diǎn)A及點(diǎn)B的坐標(biāo)代入拋物線解析式,可得出b、c的值,求出拋物線解析式。
(2)由(1)求得的拋物線解析式,可求出點(diǎn)C的坐標(biāo),繼而求出AC的長度,代入三角形的面積公式即可計(jì)算。
(3)根據(jù)點(diǎn)M在拋物線對稱軸上,可設(shè)點(diǎn)M的坐標(biāo)為(﹣1,m),分三種情況討論,①AM=AB,②BM=AB,③AM=BM,求出m的值后即可得出答案。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
8 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com