如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).

(1)求拋物線的解析式;

(2)求△ABC的面積;

(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).

 

【答案】

解:(1)∵直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),

∴可得A(1,0),B(0,﹣3),

把A、B兩點(diǎn)的坐標(biāo)分別代入y=x2+bx+c得:,解得:

∴拋物線解析式為:y=x2+2x﹣3。

(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3。

∴C點(diǎn)坐標(biāo)為:(﹣3,0),AC=4,

∴SABC=AC×OB=×4×3=6。

(3)存在。

 易得拋物線的對稱軸為:x=﹣1,假設(shè)存在M(﹣1,m)滿足題意,

 根據(jù)勾股定理,得。

分三種情況討論:

①當(dāng)AM=AB時(shí),,解得:。

∴M1(﹣1,),M2(﹣1,)。

②當(dāng)BM=AB時(shí),,解得:M3=0,M4=﹣6。

∴M3(﹣1,0),M4(﹣1,﹣6)。

③當(dāng)AM=BM時(shí),,解得:m=﹣1。

∴M5(﹣1,﹣1)。

綜上所述,共存在五個(gè)點(diǎn)使△ABM為等腰三角形,坐標(biāo)為M1(﹣1,),M2(﹣1,),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)。

【解析】

試題分析:(1)根據(jù)直線解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),然后將點(diǎn)A及點(diǎn)B的坐標(biāo)代入拋物線解析式,可得出b、c的值,求出拋物線解析式。

(2)由(1)求得的拋物線解析式,可求出點(diǎn)C的坐標(biāo),繼而求出AC的長度,代入三角形的面積公式即可計(jì)算。

(3)根據(jù)點(diǎn)M在拋物線對稱軸上,可設(shè)點(diǎn)M的坐標(biāo)為(﹣1,m),分三種情況討論,①AM=AB,②BM=AB,③AM=BM,求出m的值后即可得出答案。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案