【題目】在實驗中我們常常采用利用計算機在平面直角坐標(biāo)系中畫出拋物線和直線,利用兩圖象交點的橫坐標(biāo)來求一元二次方程的解,也可以在平面直角坐標(biāo)系中畫出拋物線和直線,用它們交點的橫坐標(biāo)來求該方程的解.所以求方程的近似解也可以利用熟悉的函數(shù)________和________的圖象交點的橫坐標(biāo)來求得.
【答案】 ;
【解析】
根據(jù)在平面直角坐標(biāo)系中畫出拋物線y=x2和直線y=-x+3,利用兩圖象交點的橫坐標(biāo)來求一元二次方程x2+x-3=0的解,進而得出方程x2+3=0的近似解也可以利用熟悉的函數(shù)的交點得出.
解:∵利用計算機在平面直角坐標(biāo)系中畫出拋物線y=x2和直線y=-x+3,利用兩圖象交點的橫坐標(biāo)來求一元二次方程x2+x-3=0的解,
也可在平面直角坐標(biāo)系中畫出拋物線y=x2-3和直線y=-x,用它們交點的橫坐標(biāo)來求該方程的解.
∴求方程x2+3=0的近似解也可以利用熟悉的函數(shù):y=和y=x2-3的圖象交點的橫坐標(biāo)來求得.
故答案為:y=,y=x2-3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為4的正方形,E為AB的中點,將△ADE繞點D沿逆時針方向旋轉(zhuǎn)后得到△DCF,連接EF,則EF的長為( 。
A. 2 B. 2 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=3,若點M,N分別在OA,OB上,ΔPMN為等邊三角形,則滿足上述條件的△PMN有中( )
A.1個B.2個C.3個D.3個以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動點D從點A出發(fā),在AB邊上以每秒1個單位的速度向點B運動,連結(jié)CD,作點A關(guān)于直線CD的對稱點E,設(shè)點D運動時間為t(s).
(1)若△BDE是以BE為底的等腰三角形,求t的值;
(2)若△BDE為直角三角形,求t的值;
(3)當(dāng)S△BCE≤時,求所有滿足條件的t的取值范圍(所有數(shù)據(jù)請保留準(zhǔn)確值,參考數(shù)據(jù):tan15°=2﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,,與軸交于點,直線經(jīng)過,兩點.
求拋物線的解析式;
在上方的拋物線上有一動點.
①如圖,當(dāng)點運動到某位置時,以,為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點的坐標(biāo);
②如圖,過點,的直線交于點,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c>0;②若點B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點,則y1<y2;③2a﹣b=0;④ <0.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,點D是等邊△ABC的邊AB上一動點(點D與點B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AE與BD有怎樣的數(shù)量關(guān)系?說明理由.
(2)類比猜想:如圖②,若點D是等邊△ABC的邊BA延長線上一動點,連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,請直接寫出AE與BD滿足的數(shù)量關(guān)系,不必說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com