精英家教網 > 初中數學 > 題目詳情
精英家教網某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米,以O為原點,OC所在的直線為y軸建立平面直角坐標系,根據以上的數據,則這段柵欄所需立柱的總長度(精確到0.1米)為(  )
A、1.5米B、1.9米C、2.3米D、2.5米
分析:由題意可知,A點坐標為(0.6,0.6),代入y=ax2,可求出解析式.由于OC左右兩邊四根柵欄的底端橫坐標已知,根據所求解析式,可計算出縱坐標,高度也就可以表示出來,計算即可.
解答:解:拋物線頂點在原點,
設拋物線解析式為y=ax2
把點A(0.6,0.6)代入解析式得a=
5
3

∴y=
5
3
x2
∴(0.2,
1
15
),(0.4,
4
15
)是該拋物線的兩點,
∴這段柵欄所需立柱的總長度=(0.6-
1
15
+0.6-
4
15
)×2+0.6≈2.3米.
故選C.
點評:本題考查點的坐標的求法及二次函數的實際應用.此題為數學建模題,借助二次函數解決實際問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,其拱形圖形為拋物線的一部分,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米.
(1)以O為原點,OC所在的直線為y軸建立平面直角坐標系,請根據以上的數據,拋物線y=ax2中a=
 
;
(2)計算一段柵欄所需立柱的總長度為
 
米.(精確到0.1米)

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》?碱}集(18):2.6 何時獲得最大利潤(解析版) 題型:解答題

某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,其拱形圖形為拋物線的一部分,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米.
(1)以O為原點,OC所在的直線為y軸建立平面直角坐標系,請根據以上的數據,拋物線y=ax2中a=______;
(2)計算一段柵欄所需立柱的總長度為______米.(精確到0.1米)

查看答案和解析>>

科目:初中數學 來源:第27章《二次函數》?碱}集(19):27.3 實踐與探索(解析版) 題型:解答題

某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,其拱形圖形為拋物線的一部分,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米.
(1)以O為原點,OC所在的直線為y軸建立平面直角坐標系,請根據以上的數據,拋物線y=ax2中a=______;
(2)計算一段柵欄所需立柱的總長度為______米.(精確到0.1米)

查看答案和解析>>

科目:初中數學 來源:2008-2009學年九年級數學下冊第一、二章綜合檢測題(解析版) 題型:選擇題

某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米,以O為原點,OC所在的直線為y軸建立平面直角坐標系,根據以上的數據,則這段柵欄所需立柱的總長度(精確到0.1米)為( )

A.1.5米
B.1.9米
C.2.3米
D.2.5米

查看答案和解析>>

同步練習冊答案