精英家教網 > 初中數學 > 題目詳情
如圖,△ABC和△DCE都是邊長為2的等邊三角形,點B、C、E在同一條直線上,連接BD,則BD的長為   
【答案】分析:作DF⊥CE于F,構建兩個直角三角形,運用勾股定理逐一解答即可.
解答:解:過D作DF⊥CE于F,根據等腰三角形的三線合一,得:CF=1.
在直角三角形CDF中,根據勾股定理,得:DF2=3.
在直角三角形BDF中,BF=BC+CF=2+1=3,
根據勾股定理得:BD==2
點評:熟練運用等腰三角形的三線合一和勾股定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F為線段AD的中點,連CF,
(1)如圖1,當D點在BC上時,BE與CF的數量關系是
 
,位置關系是
 
,請證明.
精英家教網
(2)如圖2,把△DEC繞C點順時針旋轉一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結論并加以證明.
(3)如圖3,把△DEC繞C點順時針旋轉45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點C在AD上,如果△ABC經旋轉后能與△ADE重合,那么點
A
是旋轉中心,旋轉的最小度數為
45
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD
;
(2)請?zhí)骄緽M與DM的數量關系,并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交 CE于點G,連接BE.下列結論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結論有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數;
(3)在(2)的條件下,直接寫出DE的長為
2
10
2
10
.(只填結果,不用寫出計算過程)

查看答案和解析>>

同步練習冊答案