【題目】如圖所示,在ABCD中,對角線AC與BD相交于點O,過點O作一條直線分別交AB,CD于點E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.

【答案】
(1)證明:在□ABCD中,

∵AC與BD相交于點O,

∴OA=OC,AB∥CD,

∴∠OAE=∠OCF,在△OAE和△OCF中, ,

∴△OAE≌△OCF(ASA),

∴OE=OF.


(2)解:∵△OAE≌△OCF,

∴DF=AE,

∴BE+CF=AB=6,

又∵EF=2OE=4,

∴四邊形BCFE的周長=BE+BE+CF+EF=6+4+5=15


【解析】(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,BE+CF=AB=6,繼而求得答案.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE;

2)求證:CE平分∠ACF;

3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學的作業(yè):

甲:(1)以點C為圓心,AB長為半徑畫弧;

(2)以點A為圓心,BC長為半徑畫;

(3)兩弧在BC上方交于點D,連接AD,CD,四邊形ABCD即為所求(如圖1)

乙:(1)連接AC,作線段AC的垂直平分線,交AC于點M;

(2)連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).

對于兩人的作業(yè),下列說法正確的是( 。

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個連接在一起的菱形的邊長都是1cm,一只電子甲蟲從點A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當電子甲蟲爬行2014cm時停下,則它停的位置是(   )

A. F B. E C. A D. C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫、縱坐標都為整數(shù)的點稱為整點.如圖,從內(nèi)向外依次為第,,,個正方形(實線),若整點在第個正方形的邊上,則之間滿足的數(shù)量關系為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B、C是⊙A上的兩點,AB的垂直平分線與⊙A交于E、F兩點,與線段AC交于D點.若∠BFC=20°,則∠DBC=( )

A.30°
B.29°
C.28°
D.20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )

A.①②③④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明,在括號內(nèi)填上理由.

如圖,

求證:

證明: (已知),

____________________).

____________________).

______________________________).

____________________).

查看答案和解析>>

同步練習冊答案