如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10,點E在下底邊BC上,點F在腰AB上.
(1)若EF平分等腰梯形ABCD的周長,設BE長為x,試用含x的代數(shù)式表示BF及△BEF
的面積(提示:作AK⊥BC于K,作FG⊥BC于G);
(2)是否存在線段EF將等腰梯形ABCD的周長和面積同時平分?若存在,求出此時BE的長;若不存在,請說明理由.

【答案】分析:(1)作AK⊥BC于K,F(xiàn)G⊥BC于G,根據(jù)△FBG∽△ABK對應邊成比例即可求解;
(2)根據(jù)四邊形的面積即可求出x的值.
解答:解:(1)梯形的周長為4+2×5+10=24,
由題意:BF+EB=12,即BF+x=12,
∴BF=12-x,作AK⊥BC于K,F(xiàn)G⊥BC于G,
則BK=3,AK=4,
又∵△FBG∽△ABK,
=,即=
∴FG=(12-x),
∴△BEF的面積=BE•FG=(-x2+12x);

(2)又∵S四邊形ABCD=(10+4)×4=28,則(-x2+12x)=14,
解得:x=5或x=7,
∵BF=12-x≤5,
∴x≥7,
∴x=7,
即存在線段EF將等腰梯形的周長和面積同時平分.
點評:本題考查了相似三角形的判定與性質,難度適中,關鍵是巧妙地作出輔助線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案