【小題1】情境觀察 將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是        ,∠CAC′=          °.

【小題2】問題探究 如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

【小題3】拓展延伸 如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=" k" AE,AC=" k" AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由


【小題1】AD(或A′D),90
【小題2】結(jié)論:EP=FQ.  ……………………………3分
證明:∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°.
∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.
∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.
同理AG=FQ.  ∴EP="FQ." …………………………………7分

【小題3】拓展延伸
結(jié)論:HE=HF.  ……………………………8分
理由:過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
∵四邊形ABME是矩形,∴∠BAE=90°,
∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .
同理△ACG∽△FAQ,∴ =.
∵AB=" k" AE,AC=" k" AF,∴ = = k,∴ . ∴EP="FQ."
∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH. ∴HE="HF" …………………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案