【題目】如圖,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,﹣3)、B(﹣1,0)、C(2,﹣3),拋物線(xiàn)與x軸的另一交點(diǎn)為點(diǎn)E,點(diǎn)P為拋物線(xiàn)上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P在第一象限,點(diǎn)M為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),當(dāng)四邊形MBEP恰好是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在第四象限,連結(jié)PA、PE及AE,當(dāng)t為何值時(shí),△PAE的面積最大?最大面積是多少?
(4)是否存在點(diǎn)P,使△PAE為以AE為直角邊的直角三角形,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2﹣2x﹣3;(2)P(4,5);(3)當(dāng)t=時(shí),S有最大值;(4)存在,理由,點(diǎn)P的坐標(biāo)為:(﹣2,5)或(1,﹣4)
【解析】
(1)拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,﹣3)、C(2,﹣3),則函數(shù)的對(duì)稱(chēng)軸為:x=1,故點(diǎn)E(3,0),即可求解;
(2)四邊形MBEP恰好是平行四邊形時(shí),則MP=BE=3,故t=4,則點(diǎn)P(4,5);
(3)△PAE的面積S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t),即可求解;
(4)分∠PEA=90°、∠PAE=90°兩種情況,分別求解即可.
解:(1)拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,﹣3)、C(2,﹣3),則函數(shù)的對(duì)稱(chēng)軸為:x=1,
故點(diǎn)E(3,0),
拋物線(xiàn)表達(dá)式為:y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),
故﹣3a=﹣3,解得:a=1,
故拋物線(xiàn)的表達(dá)式為:y=x2﹣2x﹣3…①;
(2)四邊形MBEP恰好是平行四邊形時(shí),則MP=BE=4,
故t=4,則點(diǎn)P(4,5);
(3)過(guò)點(diǎn)C作y軸的平行線(xiàn)交AE于點(diǎn)H,
由點(diǎn)A、E的坐標(biāo)得直線(xiàn)AE的表達(dá)式為:y=x﹣3,
設(shè)點(diǎn)P(t,t2﹣2t﹣3),則點(diǎn)H(t,t﹣3),
△PAE的面積S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t),
當(dāng)t=時(shí),S有最大值;
(4)直線(xiàn)AE表達(dá)式中的k值為1,則與之垂直的直線(xiàn)表達(dá)式中的k為﹣1.
①當(dāng)∠PEA=90°時(shí),
直線(xiàn)PE的表達(dá)式為:y=﹣x+b,經(jīng)點(diǎn)E的坐標(biāo)代入并解得:
直線(xiàn)PE的表達(dá)式為:y=﹣x+3…②,
聯(lián)立①②并解得:x=﹣2或3(舍去3),
故點(diǎn)P(﹣2,5);
②當(dāng)∠PAE=90°時(shí),
同理可得:點(diǎn)P(1,﹣4);
綜上,點(diǎn)P的坐標(biāo)為:(﹣2,5)或(1,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B為反比例函數(shù)y1=圖象上兩點(diǎn),連接AB,線(xiàn)段AB經(jīng)過(guò)點(diǎn)O,C是反比例函數(shù)y2=(k<0)在第二象限內(nèi)的圖象上一點(diǎn),當(dāng)△CAB是以AB為底的等腰三角形,且時(shí),k的值為( 。
A.﹣B.﹣3C.﹣4D.﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)整數(shù)的個(gè)位數(shù)字截去,再?gòu)挠嘞碌臄?shù)中,減去個(gè)位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除,如果差太大或心算不易看出是否7的倍數(shù),就需要繼續(xù)上述[截尾、倍大、相減、驗(yàn)差]的過(guò)程,直到能清楚判斷為止.
例如,判斷126是否7的倍數(shù)的過(guò)程如下:
12﹣6×2=0,0是7的倍數(shù),所以126是7的倍數(shù);
又例如判斷6789是否7的倍數(shù)的過(guò)程如下:
678﹣9×2=660,66﹣0×2=66,66不是7的倍數(shù),所以6789不是7的倍數(shù).
(1)請(qǐng)判斷2019和2555是否能被7整除,并說(shuō)明理由;
(2)有一個(gè)千位數(shù)字是1的四位正整數(shù),百位數(shù)字與十位數(shù)字的和是7,個(gè)位數(shù)字是十位數(shù)字的3倍,且這個(gè)四位正整數(shù)是7的倍數(shù),求這個(gè)四位正整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們規(guī)定菱形與正方形,矩形與正方形的接近程度稱(chēng)為“接近度”,在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為,,將菱形的“接近度”定義為,于是越小,菱形越接近正方形.
①若菱形的一個(gè)內(nèi)角為,則該菱形的“接近度”為_________;
②當(dāng)菱形的“接近度”等于_________時(shí),菱形是正方形;
(2)設(shè)矩形的長(zhǎng)和寬分別為, ,試寫(xiě)出矩形的“接近度”的合理定義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3)、B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫(huà)整點(diǎn)三角形.
(1)在圖1中畫(huà)一個(gè)△QAB,使點(diǎn)Q的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫(huà)一個(gè)△PAB,使點(diǎn)P、B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍;
(3)在圖2中的線(xiàn)段AB上確定點(diǎn)N,連結(jié)線(xiàn)段PN,使S△PAN=S△PBN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),自變量取時(shí),函數(shù)值也等于,則稱(chēng)是這個(gè)函數(shù)的不動(dòng)點(diǎn).
已知二次函數(shù).
(1)若3是此函數(shù)的不動(dòng)點(diǎn),則的值為__________.
(2)若此函數(shù)有兩個(gè)相異的不動(dòng)點(diǎn),,且,則的取值范圍為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一次綜合實(shí)踐活動(dòng)中,小亮要測(cè)量一樓房的高度,先在坡面D處測(cè)得樓房頂部A的仰角為300 ,沿坡面向下走到坡腳C處,然后在地面上沿CB向樓房方向繼續(xù)行走10米到達(dá)E處,測(cè)得樓房頂部A的仰角為600 .已知坡面CD=10米,山坡的坡度(坡度 是指坡面的鉛直高度與水平寬度的比),
(1)求點(diǎn)D離地面高度(即點(diǎn)D到直線(xiàn)BC的距離);
(2)求樓房AB高度.(結(jié)果保留根式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在七年級(jí)、八年級(jí)開(kāi)展了閱讀文學(xué)名著知識(shí)競(jìng)賽.該校七、八年級(jí)各有學(xué)生400人,各隨機(jī)抽取20名學(xué)生進(jìn)行了抽樣調(diào)查,獲得了他們知識(shí)競(jìng)賽成績(jī)(單位:分),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.七年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上)如下表所示:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
七年級(jí) | 84. 2 | 77 | 74 | 45﹪ |
b.八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的扇形統(tǒng)計(jì)圖如下(數(shù)據(jù)分為5組,A:50≤x≤59; B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)
c.八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)?cè)?/span>D組的是:87 88 88 88 89 89 89 89
根據(jù)以上信息,回答下列問(wèn)題:
(1)八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的中位數(shù)是 分;
(2)請(qǐng)你估計(jì)該校七、八年級(jí)所有學(xué)生中達(dá)到“優(yōu)秀”的有多少人?
(3)下列結(jié)論:①八年級(jí)成績(jī)的眾數(shù)是89分;②八年級(jí)成績(jī)的平均數(shù)可能為86分;③八年級(jí)成績(jī)的極差可能為50分.其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P和Q兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)P與點(diǎn)Q是一個(gè)“和諧點(diǎn)對(duì)”,表示為[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一個(gè)“和諧點(diǎn)對(duì)”.
(1)寫(xiě)出反比例函數(shù)y=圖象上的一個(gè)“和諧點(diǎn)對(duì)”;
(2)已知二次函數(shù)y=x2+mx+n,
①若此函數(shù)圖象上存在一個(gè)和諧點(diǎn)對(duì)[A,B],其中點(diǎn)A的坐標(biāo)為(2,4),求m,n的值;
②在①的條件下,在y軸上取一點(diǎn)M(0,b),當(dāng)∠AMB為銳角時(shí),求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com