如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為 .
2 .
【考點】垂徑定理;勾股定理;三角形中位線定理;圓周角定理.
【專題】計算題.
【分析】連結BE,設⊙O的半徑為R,由OD⊥AB,根據垂徑定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根據勾股定理得到(R﹣2)2+42=R2,解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計算出CE.
【解答】解:連結BE,設⊙O的半徑為R,如圖,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,
∵OC2+AC2=OA2,
∴(R﹣2)2+42=R2,解得R=5,
∴OC=5﹣2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中,CE===2.
故答案為:2.
【點評】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了勾股定理、圓周角定理.
科目:初中數學 來源: 題型:
三角板ABC中,∠ACB=90°,∠B=30°,AC=2,三角板繞直角頂點C逆時針旋轉,當點A的對應點A′落在AB邊的起始位置上時即停止轉動,則B點轉過的路徑長為( 。
A.π B.π C.2π D.3π
查看答案和解析>>
科目:初中數學 來源: 題型:
在平面直角坐標系中,已知拋物線y=ax2+bx﹣4經過A(﹣4,0),C(2,0)兩點.
(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值;
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,點B是拋物線與y軸交點.判斷有幾個位置能夠使以點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在長為8cm、寬為4cm的矩形中,截去一個矩形,使得留下的矩形(圖中陰影部分)與原矩形相似,則留下矩形的面積是( )
A.2cm2 B.4cm2 C.8cm2 D.16cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:
(1)九(1)班的學生人數為 ,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學生中有3男1女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
用火柴棍按下列方式擺圖形,第1個圖形用了4根火柴棍,第2個圖形用了10根火柴棍,第3個圖形用了18根火柴棍.依照此規(guī)律,若第n個圖形用了88根火柴棍,則n的值為( 。
A.6 B.7 C.8 D.9
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com