【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若 = ,則 =用含k的代數(shù)式表示).

【答案】
【解析】解:∵點E是邊CD的中點, ∴DE=CE,
∵將△ADE沿AE折疊后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
連接EG,
在Rt△ECG和Rt△EFG中,
,
∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
設CG=a,
= ,
∴GB=ka,
∴BC=CG+BG=a+ka=a(k+1),
在矩形ABCD中,AD=BC=a(k+1),
∴AF=a(k+1),
AG=AF+FG=a(k+1)+a=a(k+2),
在Rt△ABG中,AB= = =2a
= =
所以答案是:

【考點精析】認真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,AC>BC.
(1)尺規(guī)作圖:在AC邊上求作一點P,使PB=PC(保留作圖痕跡,不寫作法);
(2)若BC=6,∠C=30°,求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點A、B、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1

(1)在網(wǎng)格中畫出△A1B1C1;
(2)計算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復計算).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的頂點C的坐標為(3,4).頂點A在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過頂點B,則k的值為( )

A.12
B.20
C.24
D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,連接DE并延長DE交BC的延長線于點F.
(1)求證:BD=BF;
(2)若CF=1,cosB= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=2m+n+2和x=m+2n時,多項式x2+4x+6的值相等,且m﹣n+2≠0,則當x=3(m+n+1)時,多項式x2+4x+6的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有2000名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組在全校隨機抽取了150名學生進行抽樣調(diào)查.整理樣本數(shù)據(jù),得到下列圖表:
(1)理解劃線語句的含義,回答問題:如果150名學生全部在同一個年級抽取,這樣的抽樣是否合理?請說明理由;
(2)根據(jù)抽樣調(diào)查的結(jié)果,將估計出的全校2000名學生上學方式的情況繪制成條形統(tǒng)計圖;
(3)該校數(shù)學興趣小組結(jié)合調(diào)查獲取信息,向?qū)W校提出了一些建議,如:騎車上學的學生約占全校的34%,建議學校合理安排自行車停車場地,請你結(jié)合上述統(tǒng)計的全過程,再提出一條合理化的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+3x與x軸的正半軸交于點A,點B在拋物線上,且橫坐標為2,作BC⊥x軸于點C,⊙B經(jīng)過原點O,點E為⊙B上一動點,點F在AE上.

(1)求點A的坐標;
(2)如圖1,連結(jié)OE,當AF:FE=1:2時,求證:△ACF∽△AOE;
(3)如圖2,當點F是AE的中點時,求CF的最大值.

查看答案和解析>>

同步練習冊答案