【題目】如圖,P是邊長為3的等邊△ABCAB上一動點(diǎn),沿過點(diǎn)P的直線折疊∠B,使點(diǎn)B落在AC上,對應(yīng)點(diǎn)為D,折痕交BCE,點(diǎn)DAC的一個(gè)三等分點(diǎn),PB的長為______.

【答案】

【解析】

兩種情形:①如圖1中,當(dāng)ADAC1時(shí),設(shè)PBx,②如圖2中,當(dāng)ADAC2時(shí),利用相似三角形的性質(zhì)求解即可.

解:兩種情形:①如圖1中,當(dāng)ADAC1時(shí),設(shè)PBx,

∵△ABC是等邊三角形,

ABBCAC3,∠A=∠B=∠C60°

∵∠PDE=∠B60°,∠PDC=∠PDE+EDC=∠A+APD,

60°+EDC60°+APD,

∴∠EDC=∠APD,

∴△APD∽△CDE,

BEDE,EC,

BE+EC3,

+3,

x

②如圖2中,當(dāng)ADAC2時(shí),

由△APD∽△CDE,可得

,

DEEC,

BE+EC3,

3,

x,

綜上所述,PB的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,,點(diǎn)、分別是、的中點(diǎn),連接.

1)在圖①中,的值為______的值為______.

2)若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,點(diǎn)、的對應(yīng)點(diǎn)為,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請僅就圖②的情形給出證明.

3)當(dāng)在旋轉(zhuǎn)一周的過程中,,三點(diǎn)共線時(shí),請你直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,點(diǎn)O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.

(1)求證:DE是⊙O的切線;

(2)若B=30°,BC=且ADDF=12,求O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從AC兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線運(yùn)動,已知P沿射線AB運(yùn)動,Q沿邊BC的延長線運(yùn)動,PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動時(shí)間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當(dāng)點(diǎn)P運(yùn)動幾秒時(shí),SPCQ=SABC?

3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動時(shí),線段DE的長度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C10),tan∠BAC=

1)求過點(diǎn)A,B的直線的函數(shù)表達(dá)式;

2)在x軸上找一點(diǎn)D,連接BD,使得△ADB△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);

3)在(2)的條件下,如PQ分別是ABAD上的動點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ△ADB相似?如存在,請求出的m值;如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若(1)中所作的角平分線交AD于點(diǎn)E,AFBE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為,且過點(diǎn),有下列結(jié)論:①0;②0;③;④0.其中正確的結(jié)論是(

A.①③B.①④C.①②D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線yx交于點(diǎn)M,∠AMB90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A、B,四邊形OAMB的面積為6

1)求k的值;

2)點(diǎn)P在(1)的反比例函數(shù)yx0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,在x軸上有一點(diǎn)D40),若在直線yx上有動點(diǎn)C,構(gòu)成PDC,其面積為3,請寫出C點(diǎn)的坐標(biāo);

3)若∠EPF90°,其兩邊分別為與x軸正半軸,直線yx交于點(diǎn)E、F,問是否存在點(diǎn)E,使PEPF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案