下列命題:
①若a+b+c=0,則b2-4ac<0;
②若b=2a+3c,則一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根;
③若b2-4ac>0,則二次函數(shù)y=ax2+bc+c的圖象與坐標(biāo)軸的公共點的個數(shù)是2或3;
④若b>a+c,則一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.
其中正確的是
A.②④ B.①③ C.②③ D.③④
C
【解析】
試題分析:解:①∵a+b+c=0,
∴b=-a-c,
∴b2-4ac=(-a-c)2-4ac=a2+2ac+c2-4ac=a2-2ac+c2=(a-c)2≥0,故錯誤;
②∵b=2a+3c,
∴b2-4ac=(2a+3c)2-4ac=4a2+12ac+9c2-4ac=4a2+8ac+9c2=4(a+c)2+5c2>0,
∴一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故正確;
③∵b2-4ac>0,
∴拋物線與x軸有兩個不同的交點,
∴二次函數(shù)y=ax2+bx+c的圖象與坐標(biāo)軸的公共點的個數(shù)是3或2,故正確;
④∵b>a+c,那么設(shè)b=2,a=-4,c=-2,
∴b2-4ac=4-32<0,
∴一元二次方程ax2+bx+c=0沒有實數(shù)根,故錯誤.
考點:拋物線及根的判別式應(yīng)用
點評:本題難度較低,主要考查學(xué)生學(xué)生對拋物線及根的判別式應(yīng)用知識點的掌握。此題主要利用了二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷.
科目:初中數(shù)學(xué) 來源: 題型:
a |
b |
a |
b |
a |
c2 |
b |
c2 |
A、1個 | B、2個 | C、3個 | D、4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
x-3 |
x2-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:不詳 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市十三中中考數(shù)學(xué)模擬試卷(4月份)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com