如圖,菱形ABCD中,P為對角線AC上一動點,E,F分別為AB、BC中點,若AC=8,BD=6,則PE+PF的最小值為___________。
5

試題分析:設AC交BD于O,作E關于AC的對稱點N,連接NF,交AC于P,則此時EP+FP的值最小,根據(jù)菱形的性質推出N是AD中點,P與O重合,推出PE+PF=NF=AB,根據(jù)勾股定理求出AB的長即可.
設AC交BD于O,作E關于AC的對稱點N,連接NF,交AC于P,則此時EP+FP的值最小,

∴PN=PE,
∵四邊形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E為AB的中點,
∴N在AD上,且N為AD的中點,
∵AD∥CB,
∴∠ANP=∠CFP,∠NAP=∠FCP,
∵AD=BC,N為AD中點,F(xiàn)為BC中點,
∴AN=CF,
在△ANP和△CFP中
∠ANP=∠CFP,AN=CF,∠NAP=∠CFP,
∴△ANP≌△CFP(ASA),
∴AP=CP,
即P為AC中點,
∵O為AC中點,
∴P、O重合,
即NF過O點,
∵AN∥BF,AN=BF,
∴四邊形ANFB是平行四邊形,
∴NF=AB,
∵菱形ABCD,AC=8,BD=6,
∴AC⊥BD,OA=4,OB=3,
,
則PE+PF的最小值為5.
點評:解答本題的關鍵是理解題意確定出P的位置和求出AB=NF=EP+FP,題目比較典型,綜合性比較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在菱形ABCD中,點E,F(xiàn)分別為邊BC,CD的中點,連接AE,AF.

求證:△ABE≌△ADF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD,點E是BC上一點,以AE為邊作正方形AEFG。

(1)連結GD,求證△ADG≌△ABE;
(2)連結FC,求證∠FCN=45°;
(3)請問在AB邊上是否存在一點Q,使得四邊形DQEF是平行四邊形?若存在,請證明;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知正方形ABCD中,CM=CD,MN⊥AC,連結CN,則        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:四邊形ABCD是菱形,對角線AC與BD相交于O,菱形ABCD的周長是20,

(1)求AC的長;
(2)求菱形ABCD 的高的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列性質中是矩形和菱形共有的性質是(    ).
A.相鄰兩角都互補B.相鄰兩邊都相等
C.對角線是對稱軸D.對角線垂直且相等

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,如圖,平行四邊形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交BD于F,若AB=3,BC=5, 則AE=      ,EF=      。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若等腰梯形的三邊長為3,4,11,則這個等腰梯形的周長為(    )
A.21B.29C.21或29D.21,22或29

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點D與點B重合,折痕為EF,那么EF的長分別為 _______

查看答案和解析>>

同步練習冊答案