【題目】如圖,已知拋物線(xiàn)yax2過(guò)點(diǎn)A(﹣3,).

1)求拋物線(xiàn)的解析式;

2)已知直線(xiàn)l過(guò)點(diǎn)A,M,0)且與拋物線(xiàn)交于另一點(diǎn)B,與y軸交于點(diǎn)C,求證:MC2MAMB;

3)若點(diǎn)PD分別是拋物線(xiàn)與直線(xiàn)l上的動(dòng)點(diǎn),以OC為一邊且頂點(diǎn)為O,CP,D的四邊形是平行四邊形,求所有符合條件的P點(diǎn)坐標(biāo).

【答案】1yx2;(2)見(jiàn)解析;(3P(﹣1,2+)或(﹣1+,2)或(﹣2,1).

【解析】

1)利用待定系數(shù)法即可解決問(wèn)題.

2)構(gòu)建方程組確定點(diǎn)B的坐標(biāo),再利用平行線(xiàn)分線(xiàn)段成比例定理解決問(wèn)題即可.

3)如圖2中,設(shè)Pt,t2),根據(jù)PDCD構(gòu)建方程求出t即可解決問(wèn)題.

解:(1)把點(diǎn)A(﹣3,)代入yax2

得到9a,

a,

∴拋物線(xiàn)的解析式為yx2

2)設(shè)直線(xiàn)l的解析式為ykx+b,則有,

解得,

∴直線(xiàn)l的解析式為y=﹣x+,

x0,得到y,

C0,),

,解得,

B1),

如圖1中,過(guò)點(diǎn)AAA1x軸于A1,過(guò)BBB1x軸于B1,則BB1OCAA1,

,

MC2MAMB

3)如圖2中,設(shè)Ptt2

OC為一邊且頂點(diǎn)為O,C,PD的四邊形是平行四邊形,

PDOC,PDOC,

Dt,﹣t+),

|t2﹣(﹣t+|,

整理得:t2+2t60t2+2t0,

解得t=﹣1或﹣1或﹣20(舍棄),

P(﹣1,2+)或(﹣1+,2)或(﹣2,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為中,是直徑,點(diǎn)中點(diǎn),連接,交于點(diǎn),弦于點(diǎn),交于點(diǎn),過(guò)的切線(xiàn)的延長(zhǎng)線(xiàn)于點(diǎn),

1)求的長(zhǎng);

2)連接,求證:;

3)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),連接,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成了三等分標(biāo)有數(shù)字﹣2,3,﹣1的扇形區(qū)域轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),待轉(zhuǎn)盤(pán)自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱(chēng)為轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次(若指針指向兩個(gè)扇形的交線(xiàn),則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到指針指向一個(gè)扇形的內(nèi)部為止)

1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,求轉(zhuǎn)出的數(shù)字是3的概率;

2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,設(shè)第一次得到的數(shù)字為x,第二次得到的數(shù)字為y,點(diǎn)M的坐標(biāo)為(x,y),請(qǐng)用樹(shù)狀圖或列表法求點(diǎn)M在反比例函數(shù)y=﹣的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)準(zhǔn)備今年春季開(kāi)工前美化廠(chǎng)區(qū),計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少

2)若工廠(chǎng)每天需付給甲隊(duì)的綠化費(fèi)用為0.4萬(wàn)元,乙隊(duì)為0.5萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)10萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5代移動(dòng)通信技術(shù)簡(jiǎn)稱(chēng)5G,某地已開(kāi)通5G業(yè)務(wù),經(jīng)測(cè)試5G下載速度是4G下載速度的15倍,小明和小強(qiáng)分別用5G4G下載一部600兆的公益片,小明比小強(qiáng)所用的時(shí)間快140秒,求該地4G5G的下載速度分別是每秒多少兆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y = x2 – 2 m x – 2m – 2與直線(xiàn)y =-x-2 交于C,D兩點(diǎn),將拋物線(xiàn)在C、D兩點(diǎn)之間的部分(不含C、D)上恰有兩個(gè)點(diǎn)的橫坐標(biāo)為整數(shù),則m的取值范圍為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,∠ACB=90°,點(diǎn)DBC上,BD=6DC=2,點(diǎn)PAB上的動(dòng)點(diǎn),則PC+PD的最小值為( 。

A.8B.10C.12D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高內(nèi)容豐富,某校初二年級(jí)模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿(mǎn)分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)影塔位于河南汝南城南,俗傳冬至正午無(wú)塔影,故稱(chēng)無(wú)影塔;相傳為唐代和尚悟顆所建,故又稱(chēng)悟穎塔,該塔應(yīng)建于北宋中、早期,為豫南地區(qū)現(xiàn)存最古之磚塔.某數(shù)學(xué)小組為了度量塔高進(jìn)行了如下操作:用一架無(wú)人機(jī)在距離塔基8米處垂直起飛30米至點(diǎn)處,測(cè)得塔基處的俯角為,將無(wú)人機(jī)沿水平方向向右飛行米至點(diǎn),在此處測(cè)得塔頂的俯角為,請(qǐng)依據(jù)題中數(shù)據(jù)計(jì)算無(wú)影塔的高度.(結(jié)果精確到,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案