【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)P在BC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則BF的長(zhǎng)為_____.
【答案】
【解析】
根據(jù)折疊的性質(zhì)可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根據(jù)全等三角形的性質(zhì)可得出OE=OB、EF=BP,設(shè)BF=EP=CP=x,則AF=4﹣x,BP=3﹣x=EF,DF=DE﹣EF=4﹣(3﹣x)=x+1,依據(jù)Rt△ADF中,AF2+AD2=DF2,即可得到x的值.
解:根據(jù)折疊可知,DC=DE=4,CP=EP,∠B=∠E=90°,
在△OEF和△OBP中,
,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP,
∴BF=EP=CP,
設(shè)BF=EP=CP=x,則AF=4﹣x,BP=3﹣x=EF,DF=DE﹣EF=4﹣(3﹣x)=x+1,
∵∠A=90°,
∴在Rt△ADF中,AF2+AD2=DF2,
即(4﹣x)2+32=(1+x)2,
解得:x=,
∴BF=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明主設(shè)計(jì)的“作一個(gè)含30°角的直角三角形”的尺規(guī)作圖過(guò)程.
已知:直線(xiàn)l.
求作:△ABC,使得∠ACB=90°,∠ABC=30°.
作法:如圖,
①在直線(xiàn)l上任取兩點(diǎn)O,A;
②以點(diǎn)O為圓心,OA長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)l于點(diǎn)B;
③以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)C;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:在⊙O中,AB為直徑,
∴∠ACB=90°(① ),(填推理的依據(jù))
連接OC
∵OA=OC=AC,
∴∠CAB=60°,
∴∠ABC=30°(② ),(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開(kāi)方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有甲乙二人持錢(qián)不知其數(shù).甲得乙半而錢(qián)五十,乙得甲太半而錢(qián)亦五十.問(wèn)甲、乙持錢(qián)各幾何?”
譯文:“假設(shè)有甲乙二人,不知其錢(qián)包里有多少錢(qián).若乙把自己一半的錢(qián)給甲,則甲的錢(qián)數(shù)為50;而甲把自己的錢(qián)給乙,則乙的錢(qián)數(shù)也能為50.問(wèn)甲、乙各有多少錢(qián)?”
設(shè)甲持錢(qián)為x,乙持錢(qián)為y,可列方程組為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實(shí)數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件,其進(jìn)價(jià)和售價(jià)如下表:
商品名稱(chēng) | 甲 | 乙 |
進(jìn)價(jià)(元/件) | 40 | 90 |
售價(jià)(元/件) | 60 | 120 |
設(shè)其中甲種商品購(gòu)進(jìn)x件,商場(chǎng)售完這100件商品的總利潤(rùn)為y元.
(Ⅰ)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)該商場(chǎng)計(jì)劃最多投入8000元用于購(gòu)買(mǎi)這兩種商品,
①至少要購(gòu)進(jìn)多少件甲商品?
②若銷(xiāo)售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)y1=x﹣2的圖象與函數(shù)y2=的圖象在第一象限有一個(gè)交點(diǎn)A,且點(diǎn)A的橫坐標(biāo)是6.
(1)求m的值;
(2)補(bǔ)全表格并以表中各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn),補(bǔ)充畫(huà)出y2的函數(shù)圖象;
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 1.2 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y2 | ﹣1 | 1 | 5 | 7 | 5.2 | 3.5 | 2 | 1 | 1 | 2 |
(3)寫(xiě)出函數(shù)y2的一條性質(zhì): ;
(4)已知函數(shù)y1與y2的圖象在第一象限有且只有一個(gè)交點(diǎn)A,若函數(shù)y3=x+n與y2的函數(shù)圖象有三個(gè)交點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格圖中,△ABC的頂點(diǎn)都在網(wǎng)格線(xiàn)交點(diǎn)上.
(1)圖中AC邊上的高為 個(gè)單位長(zhǎng)度;
(2)只用沒(méi)有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫(huà)圖(保留必要痕跡):
①以點(diǎn)C為位似中心,把△ABC按相似比1:2縮小,得到△DEC;
②以AB為一邊,作矩形ABMN,使得它的面積恰好為△ABC的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店銷(xiāo)售甲、乙兩種圓規(guī),當(dāng)銷(xiāo)售5只甲種、1只乙種圓規(guī),可獲利潤(rùn)25元,銷(xiāo)售6只甲種、3只乙種圓規(guī),可獲利潤(rùn)39元.
(1)問(wèn)該文具店銷(xiāo)售甲、乙兩種圓規(guī),每只的利潤(rùn)分別是多少元?
(2)在(1)中,文具店共銷(xiāo)售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤(rùn)P與a的函數(shù)關(guān)系式,并求當(dāng)a≥30時(shí)P的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形PQMN在△ABC內(nèi),點(diǎn)P在AC上,點(diǎn)Q、M在AB上,N在△ABC內(nèi),連接AN并延長(zhǎng)交BC于G,過(guò)G點(diǎn)作GD∥AB交AC于D,過(guò)D、G分別作DE ⊥AB,GF⊥AB,垂足分別為E、F.
(1)求證:DG=GF;
(2)若AB=10,S△ABC=40,試求四邊形DEFG的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com