如圖,在等腰Rt△ABC與等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB邊上,取AE的中點(diǎn)F,CD的中點(diǎn)G,連結(jié)GF.
(1)FG與DC的位置關(guān)系是 ,F(xiàn)G與DC的數(shù)量關(guān)系是 ;
(2)若將△BDE繞B點(diǎn)逆時針旋轉(zhuǎn)180°,其它條件不變,請完成下圖,并判斷(1)中的結(jié)論是否仍然成立? 請證明你的結(jié)論.
(1)FG⊥CD ,F(xiàn)G=CD;(2)成立
【解析】
試題分析:(1)延長ED交AC的延長線于M,連接FC、FD、FM,根據(jù)矩形的性質(zhì)可得CM=BD,根據(jù)等腰直角三角形的性質(zhì)可得ED=BD=CM,再結(jié)合∠E=∠A=45º可證得△AEM是等腰直角三角形,由F是AE的中點(diǎn)可證得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可證得△EFD≌△MFC,則可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,從而可以證得結(jié)論;
(2)證法同(1).
解:(1)FG⊥CD ,F(xiàn)G=CD;
(2)延長ED交AC的延長線于M,連接FC、FD、FM
∴四邊形 BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形.
∴ED=BD=CM.
∵∠E=∠A=45º
∴△AEM是等腰直角三角形.
又F是AE的中點(diǎn).
∴MF⊥AE,EF=MF,∠E=∠FMC=45º.
∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90º
∴∠MFC+∠DFM=90º
即△CDF是等腰直角三角形.
又G是CD的中點(diǎn).
∴FG=CD,F(xiàn)G⊥CD.
考點(diǎn):旋轉(zhuǎn)問題的綜合題
點(diǎn)評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
A、①②③④ | B、只有①②③ |
C、只有①③④ | D、只有②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com