不透明的口袋中裝有1個紅球和5個白球,從中隨意摸出一個,________是可能發(fā)生的事情,________是不可能發(fā)生的事情,________是必然發(fā)生的事情.

答案:
解析:

恰好是紅(白)球,恰好是黃球,不是黑球


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一只不透明的口袋中裝有兩只白球,一只紅球,一只藍球.這些小球除顏色不同外,其余都相同.
(1)從這個口袋中隨意取出一個小球恰好是白球的概率是多少?
(2)從這個口袋中任意取出兩只球,請你用樹狀圖或列表的方法比較下列兩個事件概率的大。孩偃〉降膬芍磺蛑兄辽儆幸恢皇前浊;②取到的兩只球的顏色不同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

17、實際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個不透明的口袋中裝有紅,黃,白小球各1個,小球除顏色外其余均相同,從口袋中隨機摸出一個小球,記下顏色后放回,再隨機摸出一個小球,請你用畫樹形圖(或列表)的方法.求出兩次摸出小球的顏色相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個不透明的口袋中裝有3個白球、2個黑球、1個紅球,除顏色外其余都相同,那么P(摸到黑球)=
 
,P(摸到紅球)=
 
,P(不是白球)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•道里區(qū)模擬)一個不透明的口袋中裝有若干個顏色不同其余都相同的球,如果口袋中有4個紅球且摸到紅球的概率是
1
3
.那么口袋中球總數(shù)(  )

查看答案和解析>>

同步練習(xí)冊答案