某文具店準(zhǔn)備購進(jìn)甲,乙兩種鋼筆,若購進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?

2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

 

【答案】

15,10;(26;(3當(dāng)y=20時(shí),W有最大值,最大值為380.

【解析】

試題分析:(1)先設(shè)購進(jìn)甲,乙兩種鋼筆每支各需a元和b元,根據(jù)購進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元列出方程組,求出a,b的值即可;

2)先設(shè)購進(jìn)甲鋼筆x支,乙鋼筆y支,根據(jù)題意列出5x+10y=1000和不等式組6y≤x≤8y,把方程代入不等式組即可得出20≤y≤25,求出y的值即可;

3)先設(shè)利潤為W元,得出W=2x+3y=400-y,根據(jù)一次函數(shù)的性質(zhì)求出最大值.

試題解析:(1)設(shè)購進(jìn)甲,乙兩種鋼筆每支各需a元和b元,根據(jù)題意得:

解得:,

答:購進(jìn)甲,乙兩種鋼筆每支各需5元和10元;

2)設(shè)購進(jìn)甲鋼筆x支,乙鋼筆y支,根據(jù)題意可得:

,

解得:20≤y≤25,

x,y為整數(shù),

y=2021,22,23,2425共六種方案,

5x=1000-10y0,

0y100,

該文具店共有6種進(jìn)貨方案;

3)設(shè)利潤為W元,則W=2x+3y,

5x+10y=1000

x=200-2y,

代入上式得:W=400-y

W隨著y的增大而減小,

當(dāng)y=20時(shí),W有最大值,最大值為W=400-20=380(元).

考點(diǎn): 1.一元一次不等式組的應(yīng)用;2.二元一次方程組的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)某文具店準(zhǔn)備購進(jìn)甲,乙兩種鋼筆,若購進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某文具店準(zhǔn)備購進(jìn)甲,乙兩種鉛筆,若購進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

(1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?

(2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:解答題

21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購進(jìn)甲,乙兩種鉛筆,若購進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

(1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?

(2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:攀枝花 題型:解答題

某文具店準(zhǔn)備購進(jìn)甲,乙兩種鋼筆,若購進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案