【題目】在平面直角坐標系中,點A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大時,b的值為( )
A.B.C.D.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,連接BD,將△ABD繞B點作順時針方向旋轉得到△A′B′D′(B′與B重合),且點D′剛好落在BC的延長上,A′D′與CD相交于點E.
(1)求矩形ABCD與△A′B′D′重疊部分(如圖中陰影部分A′B′CE)的面積;
(2)將△A′B′D′以2cm/s的速度沿直線BC向右平移,當B′移動到C點時停止移動.設矩形ABCD與△A′B′D′重疊部分的面積為ycm2,移動的時間為x秒,請你求出y關于x的函數關系式,并指出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y1=﹣x+m與二次函數y2=ax2+bx﹣3的圖象交于A(﹣1,0)、B(2,﹣3)兩點.
(1)求m的值和二次函數的表達式.
(2)當y1>y2時,直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程。
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】超市銷售某種兒童玩具,該玩具的進價為100元/件,市場管理部門規(guī)定,該種玩具每件利潤不能超過進價的60%.現(xiàn)在超市的銷售單價為140元,每天可售出50件,根據市場調查發(fā)現(xiàn),如果銷售單價每上漲2元,每天銷售量會減少1件。設上漲后的銷售單價為x元,每天售出y件.
(1)請寫出y與x之間的函數表達式并寫出x的取值范圍;
(2)設超市每天銷售這種玩具可獲利w元,當x為多少元時w最大,最大為名少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是 ;
(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為 km;
(拓展應用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準備沿CE、DE從入口到出口鋪設兩條景觀小路,在四邊形CODE內種花,在剩余區(qū)域種草.
①出口E設在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)
②已知鋪設小路CE所用的普通石材每米的造價是200元,鋪設小路DE所用的景觀石材每米的造價是400元.
請問:在上是否存在點E,使鋪設小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解今年初三學生的數學學習情況,某校對上學期的數學成績作了統(tǒng)計分析,繪制得到如下圖表.請結合圖表所給出的信息解答下列問題:
成績 | 頻數 | 頻率 |
優(yōu)秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)該校初三學生共有多少人?
(2)求表中a,b,c的值,并補全條形統(tǒng)計圖.
(3)初三(一)班數學老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學中任意抽取兩名同學做學習經驗介紹,求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com