【題目】解方程
(1)解方程: + =4
(2)解不等式組 ,并把它們的解集在數(shù)軸上表示出來.

【答案】
(1)解:去分母得:x2﹣2x+1+3x2=4x2﹣4x,

解得:x=﹣ ,

經檢驗x=﹣ 是原方程的根;


(2)解: ,

由①得:x≤1,

由②得:x>﹣

∴原不等式組的解集為﹣ <x≤1,

數(shù)軸表示為


【解析】(1)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分確定出不等式組的解集,表示在數(shù)軸上即可.
【考點精析】根據題目的已知條件,利用去分母法和不等式的解集在數(shù)軸上的表示的相關知識可以得到問題的答案,需要掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在課外學習時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1 , b1 , c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2 , b2 , c2是常數(shù))滿足a1+a2=0,b1=b2 , c1+c2=0,則稱這兩個函數(shù)互為“旋轉函數(shù)”.
求函數(shù)y=﹣x2+3x﹣2的“旋轉函數(shù)”.
小明是這樣思考的:由函數(shù)y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根據a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2 , 就能確定這個函數(shù)的“旋轉函數(shù)”.
請參考小明的方法解決下面問題:
(1)寫出函數(shù)y=﹣x2+3x﹣2的“旋轉函數(shù)”;
(2)若函數(shù)y=﹣x2+ mx﹣2與y=x2﹣2nx+n互為“旋轉函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=﹣ (x+1)(x﹣4)的圖象與x軸交于點A、B兩點,與y軸交于點C,點A、B、C關于原點的對稱點分別是A1 , B1 , C1 , 試證明經過點A1 , B1 , C1的二次函數(shù)與函數(shù)y=﹣ (x+1)(x﹣4)互為“旋轉函數(shù).”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一種商品,在一段時間內,該商品的銷售量y(千克)與每千克的銷售價x(元)滿足一次函數(shù)關系(如圖所示),其中30≤x≤80.
(1)求y關于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當每千克的銷售價為多少元時,獲得的利潤為600元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“校園文化節(jié)“活動,對學生參加書法比賽的作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機抽取部分參賽學生書法作品的評定結果進行統(tǒng)計分析,并將分析結果繪制成如圖扇形統(tǒng)計圖(圖①)和條形統(tǒng)計圖(圖②),根據所給信息完成下列問題:
(1)本次抽取的樣本的容量為
(2)在圖①中,C級所對應的扇形圓心角度數(shù)是
(3)請在圖②中將條形統(tǒng)計圖補充完整;
(4)已知該校本次活動學生參賽的書法作品共750件,請你估算參賽作品中A級和B級作品共多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,頂點C的坐標為(﹣ ,3),反比例函數(shù)y= 的圖象與菱形對角線AO交于D點,連接BD,當BD⊥x軸時,k的值是(
A.4
B.﹣4
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b與反比例函數(shù)y2= 的圖象交于點A(4,m)和B(﹣8,﹣2),與y軸交于點C.
(1)m= , k1=;
(2)當x的取值是時,k1x+b> ;
(3)過點A作AD⊥x軸于點D,點P是反比例函數(shù)在第一象限的圖象上一點.設直線OP與線段AD交于點E,當S四邊形ODAC:SODE=3:1時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形規(guī)律:當n= 時,圖形“●”的個數(shù)和“△”的個數(shù)相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(1﹣,1+)在雙曲線y=(x<0)上.

(1)求k的值;
(2)在y軸上取點B(0,1),為雙曲線上是否存在點D,使得以AB,AD為鄰邊的平行四邊形ABCD的頂點C在x軸的負半軸上?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自學下面材料后,解答問題.
分母中含有未知數(shù)的不等式叫分式不等式.如:等.那么如何求出它們的解集呢?
根據我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:
(1)若a>0,b>0,則>0;若a<0,b<0,則>0;
(2)若a>0,b<0,則<0;若a<0,b>0,則<0.
反之:(1)若>0,則
(2)<0,則____________ .
根據上述規(guī)律,求不等式>0的解集.

查看答案和解析>>

同步練習冊答案