【題目】已知:如圖,在等腰中,,,動點從點出發(fā)以的速度沿勻速運動,動點同時從點出發(fā)以同樣的速度沿的延長線方向勻速運動,當點到達點時,點、同時停止運動,設運動時間為.過點作交于點,以、為邊作平行四邊形.
(1)當為何值時,為直角三角形;
(2)設四邊形的面積為,求與的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由;
(4)是否存在某一時刻,使點在的平分線上?若存在,求出的值,若不存在,請說明理由.
【答案】(1) ;(2) ;(3)或,理由見解析;(4) ,理由見解析.
【解析】
(1)過點作于點,若為直角三角形,根據題意只能,易得,然后由對應邊成比例建立方程求解;
(2)過點作于點,易證,然后由對應邊成比例建立方程,求出PM的表達式,再證從而求出PE的表達式,然后由梯形面積公式即可得到函數(shù)關系式;
(3)求出△ABC的面積,根據面積比列方程求解;
(4)假設若點在的平分線上,由角平分線加平行易得,建立方程求解即可.
解:(1)過點作于點,
若為直角三角形,根據題意只能
即
解得,
答:當=時,為直角三角形.
(2)在中,
過點作于點
即
,
即
四邊形是平行四邊形
答:與的函數(shù)關系式是.
(3)若,則
解得,
答:的值為或時,
(4)連接
若點在的平分線上
平分
,
,
,
即:
答:當時,點在的平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣4,0)、B(2,0)兩點,與y軸交于C,M為此拋物線的頂點.
(1)求此拋物線的函數(shù)解析式;
(2)動直線l從與直線AC重合的位置出發(fā),繞點A順時針旋轉,與直線AB重合時終止運動,直線l與BC交于點D,P是線段AD的中點.
①直接寫出點P所經過的路線長為 ;
②點D與B、C不重合時,過點D作DE⊥AC于點E,作DF⊥AB于點F,連接PE、PF、EF,在旋轉過程中,求EF的最小值;
(3)將拋物線C1平移得到拋物線C2,已知拋物線C2的頂點為N,與直線AC交于E、F兩點,若EF=AC,求直線MN的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連接AC,過點D作DE⊥AC,垂足為 E.
(1)求證:DC=BD;
(2)求證:DE為⊙O的切線;
(3)若AB=12,AD=6,連接OD,求扇形BOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2-4n+4經過點P(2,4),與x軸交于A、B兩點,過點P作直線l∥x軸,點C為第二象限內直線l上方,拋物線上一個動點,其橫坐標為m。
(1)如圖(1),若AB=6, 求拋物線解析式
(2)如圖(2),在(1)的條件下,設點C的橫坐標為t,ACP的面積S,求S與t之間的函數(shù)關系式.
(3)如圖(3),連接OP,過點C作EC∥OP交拋物線于點E,直線PE、CP分別交x軸于點G、H,當PG=PH時,求a的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點,連結AC,BC,分別以AC、BC為直徑作半圓,其中M,N分別是AC、BC為直徑作半圓弧的中點,,的中點分別是P,Q.若MP+NQ=7,AC+BC=26,則AB的長是( 。
A.17B.18C.19D.20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在教學樓的窗戶A處,測量樓前的一棵樹CD的高.現(xiàn)測得樹頂C處的俯角為45°,樹底D處的俯角為60°,樓底到大樹的距離BD為10米.請你幫助小明計算樹的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com