【題目】已知關于x的方程(k﹣1)x2﹣4x+4=0有實數根(注:此處并未說明此方程為一元二次方程,應分別考慮k=1與k≠1的情形),求k的取值范圍.
科目:初中數學 來源: 題型:
【題目】如圖,多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形,它的面積S可用公式(a是多邊形內的格點數,b是多邊形邊界上的格點數)計算,這個公式稱為“皮克定理”.現(xiàn)用一張方格紙共有200個格點,畫有一個格點多邊形,它的面積S=40.
(1)這個格點多邊形邊界上的格點數b= (用含a的代數式表示).
(2)設該格點多邊形外的格點數為c,則c﹣a= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D、E在AB上,且D、E分別是AC、BC的垂直平分線上一點.
(1)若△CDE的周長為4,求AB的長;
(2)若∠ACB=100°,求∠DCE的度數;
(3)若∠ACB=a(90°<a<180°),則∠DCE=。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度hcm,則h的取值范圍是( )
A.h≤17cm
B.h≥8cm
C.15cm≤h≤16cm
D.7cm≤h≤16cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果點M、N在數軸上分別表示實數m,n,在數軸上M,N兩點之間的距離表示為MN=m-n(m>n)或n-m(m<n)或︱m-n︱.利用數形結合思想解決下列問題:
已知數軸上點A與點B的距離為16個單位長度,點A在原點的左側,到原點的距離為26個單位長度,點B在點A的右側,點C表示的數與點B表示的數互為相反數,動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設移動時間為t秒.
(1)點A表示的數為 , 點B表示的數為 , 點C表示的數為 .
(2)用含t的代數式表示P到點A和點C的距離: PA= , PC= .
(3)當點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動, Q點到達C點后,再立即以同樣的速度返回,運動到終點A.
①在點Q向點C運動過程中,能否追上點P?若能,請求出點Q運動幾秒追上.
②在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過C作CF⊥AE,垂足為F,過B作BD⊥BC交CF的延長線于D.
(1)求證:AE=CD;
(2)若AC=12cm,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com