(2006•青神縣二模)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、A三點(diǎn)的二次函數(shù)解析式;
(3)設(shè)直線BE與(2)中二次函數(shù)圖象的對稱軸交于點(diǎn)F,M為OF中點(diǎn),N為AF中點(diǎn),在x軸上是否存在點(diǎn)P,使△PMN的周長最小,若存在,請求出點(diǎn)P的坐標(biāo)和最小值;若不存在,請說明理由.

【答案】分析:(1)根據(jù)折疊的性質(zhì)知:∠EBA=∠BAO=30°,由此可得∠OBE=30°,在Rt△OBE中,根據(jù)直角三角形的性質(zhì)即可求得OE的長,從而得到點(diǎn)E的坐標(biāo).同理可在Rt△OAB中,得到OA、OB的長,也就得到了A、B的坐標(biāo),由于D是AB的中點(diǎn),根據(jù)A、B的坐標(biāo),即可得到點(diǎn)D的坐標(biāo).
(2)已知了拋物線圖象上的三點(diǎn)坐標(biāo),利用待定系數(shù)法求解即可.
(3)先求出直線BE的解析式,聯(lián)立拋物線的對稱軸放出,即可得到點(diǎn)F的坐標(biāo),進(jìn)而可求出M、N的坐標(biāo);取點(diǎn)M關(guān)于x軸的對稱點(diǎn)M′,M′的坐標(biāo)易求得,即可得到直線M′N的解析式,那么直線M′N和x軸的交點(diǎn)即為所求的P點(diǎn),求出P點(diǎn)后,即可得到PM、PN的值,而MN的長為OA的一半,即可得到△PMN的最小周長.
解答:解:(1)據(jù)題意可得∠1=,OB=BD=,DE=OE,
∵Rt△AOB中,∠BAO=30°,
∴∠ABO=60°,OA=3,AB=2,
∴∠1=30°,A(3,0),B(0,).
Rt△EOB中,∵

∴OE=1,∴E點(diǎn)坐標(biāo)為(1,0);
過點(diǎn)D作DG⊥OA于G,易知D是AB的中點(diǎn),且A(3,0),B(0,),
則OG=OA=1.5,DG=OB=;
故D(1.5,).

(2)∵二次函數(shù)的圖象經(jīng)過x軸上的O、A兩點(diǎn),設(shè)二次函數(shù)的解析式為y=a(x-x1)(x-x2);
據(jù)(1)得A點(diǎn)坐標(biāo)為(3,0),
∴x1=0,x2=3,
把D點(diǎn)坐標(biāo)(1.5,)代入y=a(x-0)(x-3)
,
∴二次函數(shù)的解析式為

(3)設(shè)直線BE的解析式為y=k1x+b1,把(0,)和(1,0)分別代入y=k1x+b1
得:,
直線BE的解析式為
∵把x=1.5代入得:,
F點(diǎn)坐標(biāo)為(1.5,-),M點(diǎn)坐標(biāo)為(,-),N點(diǎn)坐標(biāo)為(,-),
M點(diǎn)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為M'(,),
設(shè)直線M'N的解析式為y=k2x+b2,把(,)和(,-)分別代入y=k2x+b2
得:,,
∴直線M'N的解析式為
把y=0代入
,
∴x軸上存在點(diǎn)P,使△PMN的周長最小,P點(diǎn)坐標(biāo)為(,0),,,
∴△PMN周長=
點(diǎn)評:此題主要考查了直角三角形的性質(zhì)、二次函數(shù)解析式的確定、三角形中位線定理、平面展開-最短路徑問題等知識,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年吉林省吉林七中分校中考數(shù)學(xué)模擬試卷(周方民)(解析版) 題型:解答題

(2006•青神縣二模)如圖,在正方形網(wǎng)格上,有一個(gè)△ABC.
(1)畫出將△ABC以點(diǎn)B為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°后的△A′B′C′;
(2)若在網(wǎng)格中建立直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-3,2),請直接寫出(1)中點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案