如圖,在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M,N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是______。
5
解析試題分析:在AC上截取AE=AN,連接BE,根據(jù)角平分線的性質(zhì)結(jié)合公共邊即可得到△AME≌△AMN,可得ME=MN,即得BM+MN=BM+ME≥BE,根據(jù)BM+MN有最小值可得當(dāng)BE是點(diǎn)B到直線AC的距離時(shí),BE⊥AC,則可得△ABE為等腰直角三角形,從而求得結(jié)果.
在AC上截取AE=AN,連接BE
∵∠BAC的平分線交BC于點(diǎn)D
∴∠EAM=∠NAM
∵AM=AM
∴△AME≌△AMN(SAS)
∴ME=MN
∴BM+MN=BM+ME≥BE
∵BM+MN有最小值
當(dāng)BE是點(diǎn)B到直線AC的距離時(shí),BE⊥AC
又AB=,∠BAC=45°,此時(shí),△ABE為等腰直角三角形
∴BE=5,即BE取最小值為5
∴BM+MN的最小值是5.
考點(diǎn):軸對稱的應(yīng)用
點(diǎn)評:構(gòu)造法是初中解題中常用的一種方法,對于最值的求解是初中考查的重點(diǎn)也是難點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com