如圖,在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M,N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是______。

5

解析試題分析:在AC上截取AE=AN,連接BE,根據(jù)角平分線的性質(zhì)結(jié)合公共邊即可得到△AME≌△AMN,可得ME=MN,即得BM+MN=BM+ME≥BE,根據(jù)BM+MN有最小值可得當(dāng)BE是點(diǎn)B到直線AC的距離時(shí),BE⊥AC,則可得△ABE為等腰直角三角形,從而求得結(jié)果.
在AC上截取AE=AN,連接BE

∵∠BAC的平分線交BC于點(diǎn)D
∴∠EAM=∠NAM
∵AM=AM
∴△AME≌△AMN(SAS)
∴ME=MN
∴BM+MN=BM+ME≥BE
∵BM+MN有最小值
當(dāng)BE是點(diǎn)B到直線AC的距離時(shí),BE⊥AC
又AB=,∠BAC=45°,此時(shí),△ABE為等腰直角三角形
∴BE=5,即BE取最小值為5
∴BM+MN的最小值是5.
考點(diǎn):軸對稱的應(yīng)用
點(diǎn)評:構(gòu)造法是初中解題中常用的一種方法,對于最值的求解是初中考查的重點(diǎn)也是難點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點(diǎn),且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為( 。
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個(gè)頂點(diǎn)為頂點(diǎn)作矩形,第三個(gè)頂點(diǎn)落在以這兩個(gè)頂點(diǎn)所確定的對邊上,這樣可以作三個(gè)面積相等的矩形,請問這三個(gè)矩形的周長大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長)答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到PD=BD時(shí),連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時(shí),必要時(shí)可直接運(yùn)用(1)的結(jié)論進(jìn)行推理與解答]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線交AC于點(diǎn)D,AB邊上的高CE交BD于點(diǎn)M,過點(diǎn)M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
 
(結(jié)果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn).則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習(xí)冊答案