【題目】如圖,拋物線y=ax2+bx+c過(guò)點(diǎn)(﹣1,0),且對(duì)稱軸為直線x=1,有下列結(jié)論: ①abc<0;②10a+3b+c>0;③拋物線經(jīng)過(guò)點(diǎn)(4,y1)與點(diǎn)(﹣3,y2),則y1>y2;④無(wú)論a,b,c取何值,拋物線都經(jīng)過(guò)同一個(gè)點(diǎn)(﹣ ,0);⑤am2+bm+a≥0,其中所有正確的結(jié)論是 .
【答案】②④⑤
【解析】解:由圖象可知,拋物線開口向上,則a>0, 頂點(diǎn)在y軸右側(cè),則b<0,
拋物線與y軸交于負(fù)半軸,則c<0,
∴abc>0,故①錯(cuò)誤;
∵拋物線y=ax2+bx+c過(guò)點(diǎn)(﹣1,0),且對(duì)稱軸為直線x=1,
∴拋物線y=ax2+bx+c過(guò)點(diǎn)(3,0),
∴當(dāng)x=3時(shí),y=9a+3b+c=0,
∵a>0,
∴10a+3b+c>0,故②正確;
∵對(duì)稱軸為x=1,且開口向上,
∴離對(duì)稱軸水平距離越大,函數(shù)值越大,
∴y1<y2 , 故③錯(cuò)誤;
當(dāng)x=﹣ 時(shí),y=a(﹣ )2+b(﹣ )+c= = ,
∵當(dāng)x=﹣1時(shí),y=a﹣b+c=0,
∴當(dāng)x=﹣ 時(shí),y=a(﹣ )2+b(﹣ )+c=0,
即無(wú)論a,b,c取何值,拋物線都經(jīng)過(guò)同一個(gè)點(diǎn)(﹣ ,0),故④正確;
x=m對(duì)應(yīng)的函數(shù)值為y=am2+bm+c,
x=1對(duì)應(yīng)的函數(shù)值為y=a+b+c,
又∵x=1時(shí)函數(shù)取得最小值,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
∵b=﹣2a,
∴am2+bm+a≥0,故⑤正確;
所以答案是:②④⑤.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,過(guò)點(diǎn)D、A分別作⊙O的切線交于點(diǎn)G,并與AB延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點(diǎn)處作業(yè),測(cè)得俯角為30°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點(diǎn)處測(cè)得俯角為45°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出,請(qǐng)通過(guò)計(jì)算判斷“蛟龍”號(hào)能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù) ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線相交于點(diǎn)O,E、F、G、H分別是AD、BD、BC、AC的中點(diǎn),要使四邊形EFGH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=AD
B.AC=BD
C.AD=BC
D.AB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)公路的節(jié)水意識(shí),合理利用水資源,某市對(duì)居民用水實(shí)行階梯水價(jià),居民家庭每月用水量劃分為兩個(gè)階梯,一、二階梯用水的單價(jià)之比等于1:2,如圖折線表示實(shí)行階梯水價(jià)后每月水費(fèi)y(元)與用水量x(m3)之間的函數(shù)關(guān)系,其中射線AB表示第二級(jí)階梯時(shí)y與x之間的函數(shù)關(guān)系.
(1)寫出點(diǎn)B的實(shí)際意義;
(2)求射線AB所在直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,AE平分∠BAD交邊BC于E,DF平分∠ADC交邊BC于F,若AD=11,EF=5,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若DC=2,求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),房間可以住滿.當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.對(duì)有游客入住的房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用. 設(shè)每個(gè)房間每天的定價(jià)增加x元.求:
(1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;
(2)該賓館每天的房間收費(fèi)p(元)關(guān)于x(元)的函數(shù)關(guān)系式;
(3)該賓館客房部每天的利潤(rùn)w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個(gè)房間的定價(jià)為每天多少元時(shí),w有最大值?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com