在矩形ABCD中,已知AD=12,AB=5,P是AD上任意一點,PE⊥BD于E,PF⊥AC于F,求PE+PF的值.

解:連接OP,
∵四邊形ABCD是矩形,
∴∠BAD=90°,AC=BD,OA=OC,OB=OD,
在△BAD中∠BAD=90°,AD=12,AB=5,由勾股定理得:
AC=BD==13,
∴OA=OD=,
∵矩形的面積是12×5=60,
∴△AOD的面積是×60=15,
∵△APO、△POD是同底的三角形,
S△AOD=S△APO+S△DPO=OA•PF+OD•PE,
15=××PF+××PE,
∴PE+PF=
答:PE+PF的值是
分析:連接OP,由矩形推出AC=BD,OA=OC,OB=OD,由勾股定理求出AC和BD的長,求出矩形ABCD的面積,進而得到△AOD的面積,根據(jù)三角形的面積公式即可求出答案.
點評:本題主要考查了矩形的性質(zhì),勾股定理,三角形的面積等知識點,解此題的關鍵是求△AOD的面積.題型較好,綜合性強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在矩形ABCD中,已知E是BC的中點,∠BAE=30°,AE=2,則AC=( �。�
A、3
B、2
3
C、
7
D、
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在矩形ABCD中,已知AB=a,BC=b,P是邊CD上異于點C、D的任意一點.
(1)若a=2b,當點P在什么位置時,△APB與△BCP相似?(不必證明)
(2)若a≠2b,①判斷以AB為直徑的圓與直線CD的位置關系,并說明理由;②是否存在點P,使以A、B、P為頂點的三角形與以A、D、P為頂點的三角形相似?(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2,BC=3,點E為AD邊上一動點(不與A、D重合),連接CE,作EF⊥CE交AB邊于F
(1)求證:△AEF∽△DCE;
(2)當△ECF∽△AEF時,求AF的長;
(3)在點E的運動過程中,AD邊上是否存在異于點E的點G,使△AGF∽△DCG成立?若存在,請猜想點G的位置,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,已知AD=15,AB=8,P是AD邊上任意一點,PE⊥BD,PF⊥AC,E,F(xiàn)分別是垂足,那么PE+PF=
120
17
120
17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,已知AB=1,BC=2,∠ABC的平分線交AD于點F,E為BC的中點,連接EF.
(1)求BF的長度;
(2)求證:四邊形ABEF是正方形;
(3)設點P是線段BF上的一個動點,點N是矩形ABCD的對稱中心,是否存在點P,使∠APN=90°?若存在,請直接寫出BP的長度;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案