【題目】如圖,在正方形ABCD中,AC為對(duì)角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長(zhǎng)為12,則EC的長(zhǎng)為

【答案】5
【解析】解:∵四邊形ABCD是正方形,AC為對(duì)角線,

∴∠EAF=45°,

又∵EF⊥AC,

∴∠AFE=90°,∠AEF=45°,

∴EF=AF=3,

∵△EFC的周長(zhǎng)為12,

∴FC=12﹣3﹣EC=9﹣EC,

在Rt△EFC中,EC2=EF2+FC2,

∴EC2=9+(9﹣EC)2,

解得EC=5.

所以答案是:5.

【考點(diǎn)精析】本題主要考查了等腰直角三角形和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD,EF分別交AB、CDG、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索與應(yīng)用.先填寫(xiě)下表,通過(guò)觀察后再回答問(wèn)題:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

1)表格中x=   y=   ;

2)從表格中探究a數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問(wèn)題:

①已知≈3.16,則   ;②已知=1.8,若=180,則a=   ;

3)拓展:已知,若,則b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,∠1+2=90°,M、N分別是BA、CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,∠F的度數(shù)為(  )

A.120°B.135°C.150°D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開(kāi)展了手機(jī)伴我健康行主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行使用手機(jī)目的每周使用手機(jī)的時(shí)間的問(wèn)卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知查資料的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

(1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠C90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c

(1)a∶b3∶4,c75cm,求a、b;

(2)a∶c15∶17,b24,求△ABC的面積;

(3)ca4,b16,求a、c

(4)∠A30°,c24,求c邊上的高hc;

(5)a、b、c為連續(xù)整數(shù),求abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABDC,ADBC,BE=DF,則圖中全等的三角形有( )

A. 3對(duì) B. 4對(duì) C. 5對(duì) D. 6對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BGBE上,且AB=AC,ADBE,∠GBE的平分線與AD交于點(diǎn)D,連接CD

1)求證:AB=AD

2)求證:CD平分∠ACE

3)猜想∠BDC與∠BAC之間有何數(shù)量關(guān)系?并對(duì)你的猜想加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案